Math, asked by alishakhan3, 1 year ago

In any triangle ABC, prove that :-

Attachments:

Answers

Answered by Shubhendu8898
2
Hi ....
here is your answer..
sorry for bad handwriting
Attachments:

alishakhan3: tysm:-)
Shubhendu8898: :-)
alishakhan3: Bro listen!!
Shubhendu8898: what
alishakhan3: In hangouts plz
Shubhendu8898: ok
sowmiyayahoocom: hloo
Answered by siddhartharao77
3
Let a = 2K sinA, b = 2K sinB, c = 2K sinC

1st we shall calculate:  \frac{b - c}{a}

= \ \textgreater \   \frac{b - c}{a} =  \frac{2KsinB - 2ksinC}{2KsinA}

= \ \textgreater \   \frac{sinB - sinC}{sin \pi  - [B + C]}

= \ \textgreater \   \frac{2 cos \frac{B + C}{2}sin \frac{B - C}{2}  }{sin(B + C)}

= \ \textgreater \   \frac{2 cos \frac{B + C}{2} sin \frac{B - C}{2}  }{2 sin  \frac{B + C}{2} cos \frac{B + C}{2} }

= \ \textgreater \   \frac{2sin \frac{B - C}{2} }{2 sin  \frac{B + C}{2} }

= \ \textgreater \   \frac{sin \frac{B - C}{2} }{sin( \frac{ \pi  - A}{2} )}

= \ \textgreater \    \frac{sin  \frac{B - C}{2} }{cos  \frac{A}{2} }

Therefore:

= \ \textgreater \   \frac{b - c}{a} =  \frac{sin  \frac{B - C}{2} }{cos  \frac{A}{2} }


(or) 

 \frac{b - c}{a} cos  \frac{A}{2} =  \frac{sin(B - C)}{2}



Hope this helps!

siddhartharao77: :-)
alishakhan3: :-)
Similar questions