in any triangle ABC,prove that (a-b)^2 cos^2c/2 + (a+b)^2 sin^c/2=c^2
Answers
Answered by
91
We have in a triangle ,
[tex]\cos^2(\frac{C}{2} )+\sin^2(\frac{C}{2} )=1\\ \cos^2(\frac{C}{2} )-\sin^2(\frac{C}{2} )=\cos C\\ \cos C=\frac{a^2+b^2-c^2}{2ab}[/tex]
[tex]LHS=(a-b)^2\cos^2(\frac{C}{2} )+(a+b)^2\sin^2(\frac{C}{2} )\\ LHS=(a^2+b^2-2ab)\cos^2(\frac{C}{2} )+(a^2+b^2+2ab)\sin^2(\frac{C}{2} )\\ LHS=(a^2+b^2)(\cos^2(\frac{C}{2} )+\sin^2(\frac{C}{2} ))-2ab(\cos^2(\frac{C}{2} )-\sin^2(\frac{C}{2} ))[/tex].
Simplifying,
[tex]LHS=(a^2+b^2)(1)-2ab(\cos C)\\ LHS=a^2+b^2-2ab(\frac{a^2+b^2-c^2}{2ab} )\\ LHS=a^2+b^2-(a^2+b^2-c^2)\\ LHS=c^2=RHS[/tex].
The proof is complete.
Answered by
11
Answer:
c² is the answer
Step-by-step explanation:
please look at the attachment
Attachments:
Similar questions
English,
7 months ago
Art,
7 months ago
Math,
1 year ago
Environmental Sciences,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago