In any triangle abc prove that a(b cos C - c cos B) = b^2 - c^2.
Answers
Answer:
b^2 = a^2 + c^2 - 2ac cos B
c^2 = a^2 + b^2 - 2ab cos C
b^2 - c^2 = c^2 - b^2 - 2ac cos B + 2ab cos C
c^2 and - b^2
2b^2 - 2c^2 = -2ac cos B + 2ab cos C
2(b^2 - c^2) = 2a(-c cos B + b cos C)
So b^2 - c^2 = a(b cos C - c cos B)
Let the angles of the triangle be A , B and C and let the sides of the triangle be a , b and c .
By using the Cosines Law we get :
a² + c² - 2 ac cos B = b² --------(1)
Again by using the Cosines Law we get :
a² + b² - 2 ab cos C = c² ---------(2)
Subtract equation (2) from (1) :
⇒ c² - 2 ac cos B - b² + 2 ab cos C = b² - c²
Transpose c² and -b² to the other side :
⇒ 2 ab cos C - 2 ac cos B = b² - c² + b² - c²
⇒ 2 ab cos C - 2 ab cos B = 2 b² - 2 c²
Take 2 as common on both sides :
⇒ 2 ( ab cos C - ac cos B ) = 2 ( b² - c² )
⇒ ab cos C - ac cos B = b² - c²
Take a as common in the left side :
⇒ a ( b cos C - c cos B ) = b² - c²
Hence it is proved .