In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
"PLEASE DON'T POST IRRELEVANT ANSWERS"
Answers
Answer:
Step-by-step explanation:
Also sin(A - B) = sinA.cosB - cosA.sinB
= akcosB - cosA.bk
= K(acosB - bcosA}
Similarly, sin(B - C) = k(bcosC - ccosB)
sin(C - A) = k(ccosA - acosC)
LHS = asin(B- C) + bsin(C - A) + csin(A - B)
= ak(bcosC - ccosB) + bk(acosC - ccosA) + ck(acosB - bcosA)
= k(bccosA - bccosA) + k(accosB - accosB) + k(abcosC - abcosC)
= 0 + 0 + 0 = 0 = RHS
Answer:
Use sine formula ,
∴sinA = ak
sinB = bk
sinC = ck
Also sin(A - B) = sinA.cosB - cosA.sinB
= akcosB - cosA.bk
= K(acosB - bcosA}
Similarly, sin(B - C) = k(bcosC - ccosB)
sin(C - A) = k(ccosA - acosC)
LHS = asin(B- C) + bsin(C - A) + csin(A - B)
= ak(bcosC - ccosB) + bk(acosC - ccosA) + ck(acosB - bcosA)
= k(bccosA - bccosA) + k(accosB - accosB) + k(abcosC - abcosC)
= 0 + 0 + 0 = 0 = RHS
Step-by-step explanation:
here is your answer please mark me as the brainiest please please please