Math, asked by sakshan2006, 1 month ago

In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Consider,

 \red{\rm :\longmapsto\: \sf \: asin(B - C) + bsin(C - A) + csin(A - B)}

We know,

Sine Law

\bf :\longmapsto\:In \:  \triangle \: ABC

\rm :\longmapsto\:\dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC}  = k

Thus,

 \red{\rm :\longmapsto\:a = sinA \: } \\  \red{\rm :\longmapsto\: b = sinB\: } \\  \red{\rm :\longmapsto\: c = sinC\: }

Now,

Consider,

 \green{\rm :\longmapsto\: \bf \: a \: sin(B - C)}

 \rm \:=  \: \:k \: sinA \: sin(B - C)

\red{\bigg \{ \because \:a = k \: sinA \bigg \}}

 \rm \:=  \: \:k \: sin\bigg(\pi - (B  +  C) \bigg)  \: sin(B - C)

\red{\bigg \{ \because \: A + B + C = \pi\bigg \}}

 \rm \:=  \: \:k \: sin(B + C) \: sin(B - C)

\red{\bigg \{ \because \: sin(\pi - x) = sinx\bigg \}}

 \rm \:=  \: \:k( {sin}^{2}B -  {sin}^{2}C)

\bf\implies \:a \: sin(B - C) \:  =   \: \:k( {sin}^{2}B -  {sin}^{2}C) -  - (1)

Consider,

 \green{\rm :\longmapsto\: \bf \: b \: sin(C - A)}

 \rm \:=  \: \:k \: sinB \: sin(C - A)

 \rm \:=  \: \:k \: sin\bigg(\pi - (C + A) \bigg)  \: sin(C - A)

 \rm \:=  \: \:k \: sin(C + A) \: sin(C - A)

 \rm \:=  \: \:k \: ( {sin}^{2}C -  {sin}^{2}A)

\bf\implies \:b \: sin(C - A) \:  =   \: \:k( {sin}^{2}C -  {sin}^{2}A) -  - (2)

Consider,

 \green{\rm :\longmapsto\: \bf \: c \: sin( A - B)}

 \rm \:=  \: \:k \: sinC \: sin(A - B)

 \rm \:=  \: \:k \: sin\bigg(\pi - (A + B)\bigg)\: sin(A - B)

 \rm \:=  \: \:k \: sin(A + B) \: sin(A - B)

 \rm \:=  \: \:k \: ( {sin}^{2}A -  {sin}^{2}B)

\bf\implies \:c \: sin(A - B) \:  =   \: \:k( {sin}^{2}A -  {sin}^{2}B) -  - (3)

Hence,

 \red{\rm :\longmapsto\: \sf \: asin(B - C) + bsin(C - A) + csin(A - B)}

 \rm \:=k( {sin}^{2}B -{sin}^{2}C) + k( {sin}^{2}C-{sin}^{2}A)+\:k( {sin}^{2}A -  {sin}^{2}B)

 \rm \:=k( {sin}^{2}B -{sin}^{2}C+{sin}^{2}C-{sin}^{2}A+\:{sin}^{2}A -  {sin}^{2}B)

 \rm \:=  \: \:k \times 0

 \rm \:=  \: \:0

{{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Cosine Law :-

\green{\boxed{\bf{cosA = \dfrac{ {b}^{2} +  {c}^{2} -  {a}^{2} }{2bc} }}}

\green{\boxed{\bf{cosB = \dfrac{ {c}^{2} +  {a}^{2} -  {b}^{2} }{2ac} }}}

\green{\boxed{\bf{cosC = \dfrac{ {a}^{2} +  {b}^{2} -  {c}^{2} }{2ab} }}}

Projection Formula :-

\green{\boxed{\bf{a = b \: cosC + c \: cosB}}}

\green{\boxed{\bf{b = a \: cosC + c \: cosA}}}

\green{\boxed{\bf{c = a \: cosB + b \: cosA}}}

Similar questions