Math, asked by Anonymous, 2 months ago

In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.​

Answers

Answered by bigdashezada61
6

Use sin formula

a

sinA

=

b

sinB

=

c

sinC

=k

sinA=ak,sinB=bk,sinc=ck

Also, sin(A−B)=sinA..cosB−cosA−sinB

=akcosB−cosA.bk

k(acosB−bcosA)

Similarity, sin(B−C)=k(bcosC−ccosB)

sin(C−A)=k(ccosA−acosc)

LHS=asin(B−C)+bsin(C−A)+csin(A−B)

=ak(bcosc−cosB)+bk(ccosA−acosC)+ck(acosB−bcosA)

=k(bccosA−bccosA)+k(accosB−accosB)+(abcos−abcosc)

=0+0+0

=RHS

Answered by TYKE
1

Question :

In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.

Answer :

 \sf \small \bullet \small \frac{sin A}{a}=\frac{sin B}{b}=\frac{sin C}{c}

  • sinA=ak,sinB=bk,sinc=ck

  • Also, sin(A−B)=sinA..cosB−cosA−sinB

  • =akcosB−cosA.bk

  • k(acosB−bcosA)

  • Similarity, sin(B−C)=k(bcosC−ccosB)

  • sin(C−A)=k(ccosA−acosc)

  • LHS=asin(B−C)+bsin(C−A)+csin(A−B)

  • =ak(bcosc−cosB)+bk(ccosA−acosC)+ck(acosB−bcosA)

  • =k(bccosA−bccosA)+k(accosB−accosB)+(abcos−abcosc)

  • =0+0+0

  • =RHS
Similar questions