In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
Answers
Answered by
6
Use sin formula
a
sinA
=
b
sinB
=
c
sinC
=k
sinA=ak,sinB=bk,sinc=ck
Also, sin(A−B)=sinA..cosB−cosA−sinB
=akcosB−cosA.bk
k(acosB−bcosA)
Similarity, sin(B−C)=k(bcosC−ccosB)
sin(C−A)=k(ccosA−acosc)
LHS=asin(B−C)+bsin(C−A)+csin(A−B)
=ak(bcosc−cosB)+bk(ccosA−acosC)+ck(acosB−bcosA)
=k(bccosA−bccosA)+k(accosB−accosB)+(abcos−abcosc)
=0+0+0
=RHS
Answered by
1
Question :
In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
Answer :
- sinA=ak,sinB=bk,sinc=ck
- Also, sin(A−B)=sinA..cosB−cosA−sinB
- =akcosB−cosA.bk
- k(acosB−bcosA)
- Similarity, sin(B−C)=k(bcosC−ccosB)
- sin(C−A)=k(ccosA−acosc)
- LHS=asin(B−C)+bsin(C−A)+csin(A−B)
- =ak(bcosc−cosB)+bk(ccosA−acosC)+ck(acosB−bcosA)
- =k(bccosA−bccosA)+k(accosB−accosB)+(abcos−abcosc)
- =0+0+0
- =RHS
Similar questions