Math, asked by AnanyaBaalveer, 1 day ago

In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.

◼️No copied from websites
◼️Be Brainly
◼️Thanks for your answer​

Answers

Answered by gammermunal
13

Answer:

solution

asinB- asinC +bsinC- bsin A +csinA-csinb

=0

Attachments:
Answered by mathdude500
30

\large\underline{\sf{Solution-}}

We know, In triangle ABC,

\boxed{ \rm{ \:A + B + C = \pi \: }} \\

Now,

Consider LHS

\rm \: a sin (B – C) + b sin (C – A) + c sin (A – B) \\

We know, Sine law states that, In triangle ABC,

\rm \: \dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC}  = k \\

So, from we get

\rm \: a = k \: sinA \\

\rm \: b = k \: sinB \\

\rm \: c = k \: sinC \\

So, above expression can be rewritten as

\rm \: =  ksinA sin (B – C) + ksinB sin (C – A) + ksinCsin (A – B) \\

\rm \: =  k\bigg(sin[\pi - (B + C)] sin (B – C) + sin[\pi - (C + A)] sin (C – A) + sin[\pi - (A + B)]sin (A – B) \bigg)\\

\rm \: =  k\bigg(sin(B + C)sin (B – C) + sin(C + A)sin (C – A) + sin(A + B)sin (A – B) \bigg)\\

\rm \:  = k\bigg( {sin}^{2}A -  {sin}^{2}B +  {sin}^{2}B -  {sin}^{2}C +  {sin}^{2}C -  {sin}^{2}A\bigg)

\rm \:  =  \: k \times 0 \\

\rm \:  =  \: 0 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:a sin (B – C) + b sin (C – A) + c sin (A – B) = 0 \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:sin(\pi - x) = sinx \: }} \\

\boxed{ \rm{ \:sin(x + y)sin(x - y) =  {sin}^{2}x -  {sin}^{2}y \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:cosA =  \frac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2bc} \: }} \\

\boxed{ \rm{ \:cosB =  \frac{ {c}^{2}  +  {a}^{2} -  {b}^{2}  }{2ca} \: }} \\

\boxed{ \rm{ \:cosC =  \frac{ {a}^{2}  +  {b}^{2} -  {c}^{2}  }{2ab} \: }} \\

\boxed{ \rm{ \:a \:  =  \: bcosC + ccosB \: }} \\

\boxed{ \rm{ \:b \:  =  \: acosC + ccosA \: }} \\

\boxed{ \rm{ \:c \:  =  \: acosB + bcosA \: }} \\

Similar questions