In any triangle abc prove that (b^2 -c^2)/a^2 sin2a + (c^2 -a^2)/b^2 sin 2b + (a^2 -b^2)/c^2 sin 2 =0
Answers
Answered by
67
We know that in a triangle .
So
.
Similarly,
[tex]\frac{\sin 2B}{b^2} =\frac{c^2+a^2-b^2}{2kabc} \\ \frac{\sin 2C}{c^2} =\frac{a^2+b^2-c^2}{2kabc}[/tex].
Thus,
[tex]LHS=(b^2 -c^2)\frac{b^2+c^2-a^2}{2kabc} +(c^2 -b^2)\frac{c^2+a^2-b^2}{2kabc}+(a^2 -b^2)\frac{a^2+b^2-c^2}{2kabc}\\ LHS=\frac{b^4-c^4-a^2(b^2 -c^2)}{2kabc} +\frac{c^4-a^4-b^2(c^2 -b^2)}{2kabc}+\frac{a^4-b^4-c^2(a^2 -b^2)}{2kabc}\\ LHS=\frac{b^4-c^4-a^2(b^2 -c^2)+c^4-a^4-b^2(c^2 -b^2)+a^4-b^4-c^2(a^2 -b^2)}{2kabc} \\ LHS=\frac{0}{2kabc} =0=RHS[/tex].
The proof is complete.
Answered by
26
Answer:
Step-by-step explanation:
we know sine rule
we get
a= k sinA , b=ksinB , c=ksinC
the value of
similarly
LHS=
Similar questions