In any triangle ABC, prove that
(c) sin (A-B) =(a²-b²)/c² sinC
Answers
Answered by
0
Answer:
note: the "2" is square here.
Step-by-step explanation:
a2−b2/a2+b2=sin(A−B)/sin(A+B)
⇒a2+b2/a2−b2=sin(A+B)/sin(A−B)
Using componendo and dividendo,
⇒2a2/2b2=sin(A+B)+sin(A−B)/sin(A+B)−sin(A−B)
⇒a2/b2=2sinAcosB/2sinBcosA
⇒a2/b2=sinAcosB/sinBcosA
Now, from sine law,
a/sinA=b/sinB=c/sinC=k
⇒a=k sinA,b=k sinB,c=k sinC
So, our equation becomes,
a2/b2=akcosB/bkcosA
⇒cosB/cosA=a/b
⇒b cos B=a cos A
⇒b(a2+c2−b2/ac)=a(b2+c2−a2/bc)
⇒b2a2+b2c2−b4=a2b2+a2c2−a4
⇒c2(b2−a2)=b4−a4
⇒c2(b2−a2)−(b2+a2)(b2−a2)=0
⇒(b2−a2)(c2−(b2+a2))=0
⇒(b2−a2)=0or(c2−(b2+a2))=0
⇒b2=a2orc2=(b2+a2)
⇒b=aorc2=(b2+a2)
It means, either the ΔABC is a right angle triangle or a isoceles triangle.
hope it helps :)
Similar questions