Math, asked by adithya172065, 4 months ago

In any triangle ABC prove that cos²A+cos²(60+A)+cos²(60-A)=3/2​

Answers

Answered by Anonymous
0

Answer:

{cos}^{2} A + { \cos}^{2} (A + 60) + {cos}^{2} ( A - 60) = \frac{3}{2} cos

2

A+cos

2

(A+60)+cos

2

(A−60)=

2

3

Using the formula

\small{\cos( \alpha + \beta ) = \cos( \alpha ) \cos( \beta ) - \sin( \alpha ) \sin( \beta )} cos(α+β)=cos(α)cos(β)−sin(α)sin(β)

and

\small{\cos( \alpha - \beta ) = \cos( \alpha ) \cos( \beta ) + \sin( \alpha ) \sin( \beta ) }cos(α−β)=cos(α)cos(β)+sin(α)sin(β)

\small{cos}^{2} A + {cos}^{2} A \: {cos}^{2} 60 \degree - {sin}^{2} A \: {sin}^{2} 60 \degree + {cos}^{2}A \: {cos}^{2} 60 \degree + {sin}^{2} A \: {sin}^{2} 60 \degree \: = \frac{3}{2} cos

2

A+cos

2

Acos

2

60°−sin

2

Asin

2

60°+cos

2

Acos

2

60°+sin

2

Asin

2

60°=

2

3

\small {cos}^{2} A + \frac{1}{4} {cos}^{2} A + \frac{1}{4} {cos}^{2} A = \frac{3}{2} cos

2

A+

4

1

cos

2

A+

4

1

cos

2

A=

2

3

{cos}^{2} A(1 + \frac{1}{4} + \frac{1}{4} ) = \frac{3}{2} cos

2

A(1+

4

1

+

4

1

)=

2

3

\frac{3}{2} {cos}^{2} A = \frac{3}{2}

2

3

cos

2

A=

2

3

{cos}^{2} A = 1 \implies \: cos \: A = + - 1cos

2

A=1⟹cosA=+−1

A = \color{green}90 \degree \: or \: 270 \degreeA=90°or270°

Hope it helps ✌️ ✌️

Step-by-step explanation:

Similar questions