Math, asked by trishaasaravanan28, 4 months ago

In any triangle ABC, prove that the area ∆= b²+c²-a²/4cot a​

Answers

Answered by EnchantedGirl
10

\bigstar \underline{\underline{\mathfrak{ To\ prove:-}}}\\

  • For any triangle ABC,  the area ∆= b²+c²-a²/4cot a​.

\\

\bigstar \underline{\underline{\mathfrak{Proof:-}}}\\

\\

We need to know:

\leadsto \sf cotA =\frac{cosA}{sinA} \\

\leadsto \sf cosA=\frac{b^2+c^2-a^2}{2bc} \\

Where,

a, b, c are the magnitudes of the sides opposite to the vertices A, B, C.

\leadsto \sf \triangle = \frac{1}{2} bcsinA\\

-------------------------

LHS = Δ =1/2 bcsinA

RHS =  b²+c²-a²/4cot a​

We have to show that LHS = RHS .

Now,

RHS :

:\implies \sf \frac{b^2+c^2-a^2}{4cotA} \\\\

:\implies \sf \frac{b^2 +c^2 -a^2}{4(cosA/sinA)} \\\\

:\implies \sf \frac{b^2+c^2-a^2 \times (sinA)}{cosA} \\\\

:\implies \sf \frac{\cancel{b^2+c^2-a^2}\times sinA}{4\times (\frac{\cancel{b^2+c^2-a^2}}{2bc})}\\\\

:\implies \sf \frac{2bc \times sinA}{4} \\\\:\implies \sf \frac{1}{2} bcsinA\\\\

        = Δ

LHS =RHS

\\

Hence proved!

------------------------

Know More:-

\\

\mapsto \sf cosB=\frac{a^2+c^2-b^2}{2ac} \\

\mapsto \sf cosC=\frac{a^2+b^2-c^2}{2ab} \\

\mapsto \sf a^2=b^2+c^2 -2bccosA\\

\mapsto \sf b^2 =a^2 +c^2 -2ac\ cosB\\

\mapsto \sf c^2=b^2 +a^2 -2ab\ cosC\\

\mapsto \sf \frac{a}{sinA} =\frac{b}{sinB} =\frac{c}{sinC} \ \ (or) \\

\mapsto \sf \frac{sinA}{a} =\frac{sinB}{b} =\frac{sinC}{c} \\

\mapsto \sf cotA=\frac{cosA}{sinA} = \frac{1}{tanA} \\

--------------------------------


reddykrishna76028: hi
Answered by Anonymous
1

\bigstar \underline{\underline{\mathfrak{ To\ prove:-}}}\\

For any triangle ABC,  the area ∆= b²+c²-a²/4cot a.

\\

\bigstar \underline{\underline{\mathfrak{Proof:-}}}\\

\\

We need to know:

\leadsto \sf cotA =\frac{cosA}{sinA} \\

\leadsto \sf cosA=\frac{b^2+c^2-a^2}{2bc} \\

Where,

a, b, c are the magnitudes of the sides opposite to the vertices A, B, C.

\leadsto \sf \triangle = \frac{1}{2} bcsinA\\

-------------------------

LHS = Δ =1/2 bcsinA

RHS =  b²+c²-a²/4cot a

We have to show that LHS = RHS .

Now,

RHS :

:\implies \sf \frac{b^2+c^2-a^2}{4cotA} \\\\

:\implies \sf \frac{b^2 +c^2 -a^2}{4(cosA/sinA)} \\\\

:\implies \sf \frac{b^2+c^2-a^2 \times (sinA)}{cosA} \\\\

:\implies \sf \frac{\cancel{b^2+c^2-a^2}\times sinA}{4\times (\frac{\cancel{b^2+c^2-a^2}}{2bc})}\\\\

:\implies \sf \frac{2bc \times sinA}{4} \\\\:\implies \sf \frac{1}{2} bcsinA\\\\

        = Δ

∴LHS =RHS

\\

Hence proved!

------------------------

✪ Know More:-

\\

\mapsto \sf cosB=\frac{a^2+c^2-b^2}{2ac} \\

\mapsto \sf cosC=\frac{a^2+b^2-c^2}{2ab} \\

\mapsto \sf a^2=b^2+c^2 -2bccosA\\

\mapsto \sf b^2 =a^2 +c^2 -2ac\ cosB\\

\mapsto \sf c^2=b^2 +a^2 -2ab\ cosC\\

\mapsto \sf \frac{a}{sinA} =\frac{b}{sinB} =\frac{c}{sinC} \ \ (or) \\

\mapsto \sf \frac{sinA}{a} =\frac{sinB}{b} =\frac{sinC}{c} \\

\mapsto \sf cotA=\frac{cosA}{sinA} = \frac{1}{tanA} \\

--------------------------------

Similar questions