Math, asked by franky86, 7 months ago


In ∆AOB and ∆COD, angle B = angle C and O is the midpoint of BC.
Find the values of x and y if AB= 3x units, CD = y+2 units, AO = x+2 units, DO = y units

Attachments:

Answers

Answered by rocky200216
27

\mathcal{\gray{\underline{\underline{\blue{GIVEN:-}}}}}

  • In ∆AOB and ∆COD,

  1. ⟨B = ⟨C .
  2. And O is the midpoint of BC .

  • BO = CO

Let, According to the question

  • AB = 3x units

  • CD = y + 2 units

  • AO = x + 2 units

  • DO = y units

\mathcal{\gray{\underline{\underline{\blue{TO\: FIND:-}}}}}

  • The value of x and y .

\mathcal{\gray{\underline{\underline{\blue{SOLUTION:-}}}}}

✍️ See the attachment figure .

\red\checkmark\:\rm{\pink{\angle{B}\:=\:\angle{C}}} [Given]

In the figure,

  • AB || CD and BC be line which intersect the two parallel lines .

\rm{\orange{\implies\:\angle{A}\:=\:\angle{D}}} [Alternate angles]

  • AD line and BC line intersect each other at O .

\rm{\green{\implies\:\angle{AOB}\:=\:\angle{COD}}} [Opposite angles]

Now, in AOB and COD,

  1. ⟨A = ⟨D
  2. ⟨AOB = ⟨COD
  3. ⟨C = ⟨B

☃️ Hence, \mathcal\red{\triangle{AOB}\:\cong\:\triangle{COD}\:} [AAA criteria]

So,

\rm{\implies\:AB\:=\:DC}

\rm{\implies\:3x\:=\:y\:+\:2\:}

\rm\purple{\implies\:3x\:-\:y\:=\:2\:} -----(1)

And

\rm{\implies\:AO\:=\:DO}

\rm{\implies\:x\:+\:2\:=\:y\:}

\rm\purple{\implies\:x\:-\:y\:=\:-2\:} -----(2)

Now, Equation (1) - Equation (2),

=> 3x - y - (x - y) = 2 - (-2)

=> 3x - y - x + y = 2 + 2

=> 2x = 4

=> x = 4/2

\mathcal\red{\implies\:x\:=\:2\:}

⚡ Put the value of “ x = 2 ” in equation (2), we get

=> 2 - y = -2.

=> y = 2 + 2

\mathcal\red{\implies\:y\:=\:4\:}

\rm\pink{\therefore} The value of “x” is 2 and the value of “y” is 4 .

Attachments:
Similar questions