Math, asked by tithi1905, 8 months ago

in ap a12 = -13, s4 = 24 find s10​

Answers

Answered by pulakmath007
31

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

In an arithmetic progression with

First term = a

Common Difference = d

 \sf{ 1. \:  \:n th  \:  \: term \:  is = a+(n-1)d \:  \: }

  \displaystyle \: \sf{ 2.\: \:  Sum  \: of  \: the \:  first \:  n \:  terms \:  is \:  =  \frac{n}{2}  [ 2a + (n - 1)d] \:   \: }

GIVEN

 \sf{In  \: an \:  AP \:  \:  a_{12} = -13 \: , S_4 = 24 \: }

TO DETERMINE

 \sf{S_{10}}

CALCULATION

Let first term = a

Common Difference = d

 \sf{a_{12} = 12 th  \:  \: term  = a + 11d\: }

 \implies \:  \sf{ a + 11d\: =  - 13 } \:  \:  \:  \: ......(1)

 \sf{S_4 = Sum  \: of \:  the \:  first  \: 4  \: terms}

  \displaystyle \: \sf{   =  \frac{4}{2}   \bigg[ 2a + (4 - 1)d \bigg] \:   \: }

  =  \displaystyle \: \sf{2(2a + 3d)  \: }

 \implies \sf{ \: 2 \times (2a + 3d) =   24 \: }

 \implies \sf{ \:  (2a + 3d) =   12 \: }........(2)

Now 2 × Equation (1) - Equation (2) gives

 \sf{ \: 19d =   - 38\: }

 \implies \:  \sf{ \: d =   - 2\: }

From Equation (1)

 \sf{ \: a =  - 13 - 11d \: }

 \implies \:  \sf{ \: a =  - 13  + 22 = 9 \: }

Hence

 \sf{S_{10} = Sum  \: of \:  the \:  first  \: 1  \: terms}

  \displaystyle \: \sf{   =  \frac{10}{2}   \bigg[ 2a + (10- 1)d \bigg] \:   \: }

 =  \sf{ 5 \times (2a + 9d)\:  \: }

  \displaystyle \: \sf{   =  5  \bigg[ (2 \times 9) +  \{9 \times ( - 2) \} \bigg] \:   \: }

  \displaystyle \: \sf{   =  5  \times (18 - 18) }

  \displaystyle \: \sf{   = 0 \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

find the 100th term of an AP whose nth term is 3n+1

https://brainly.in/question/22293445

Similar questions
Math, 4 months ago