Math, asked by goutham1926, 1 year ago

In AP of 50 terms the sum of first 10 terms is 210 and the sum of its last 15 term is 2565 find the AP

Answers

Answered by sejal577922
3
th term of an A.P., an = a + ( n – 1)d

Sum of n terms of an A.P., S n = n/ 2 [2a + (n – 1)d]

Given that the sum of the first 10 terms is 210.

⇒ 10 / 2 [2a + 9d ] = 210

⇒ 5[ 2a + 9 d ] = 210

⇒2a + 9d = 42 ----------- (1)

15 th term from the last = ( 50 – 15 + 1 ) th = 36 th term from the beginning

⇒ a36 = a + 35d

Sum of the last 15 terms = 15/2 [2a36 + ( 15 – 1)d ] = 2565

⇒ 15 / 2 [ 2(a + 35d) + 14d ] = 2565

⇒ 15 [ a + 35d + 7d ] = 2565

⇒a + 42d = 171 ----------(2)


sejal577922: pls mark brainloest
sejal577922: brainliest
Answered by Anonymous
0

   \underline{  \underline{\bf{Answer}}}  :  -  \\   \implies \: 3, \: 7 \:, 11 \: ,15, \: ..........,199 \\ \\   \underline{\underline{ \bf{Step - by  - step \: explanation \: }}} :  -  \\  \\

According to the question:-

 \bf{sum \: of \: first \: 10 \: terms \:( s_{10})   = 210} \\   210 =  \frac{10}{2} \bigg (2a + (101)d \bigg) \: \\   \\ 2a + 9d = 42 \: .........(1)\\   \\ \bf{sum \: of \: last \: 15 \: terms \: ( s_{15})= 2565} \\ \\  s_{50} -s_{35} = 2565  \\  \\ 2565 =  \frac{50}{2}  \bigg(2a + (50 - 1)d \bigg)  -  \frac{35}{2} \bigg(2a + (35 - 1)d \bigg) \\  \\ 2565 = 25(2a + 49d) - 35(a + 17d)  \\  \\  2565 = 50a + 1225d - 35a - 595d \\  \\ after \: solving \: this \:  \\  \\ a + 42d = 171 \:  ...........(2) \\  \\ from \: eq(1) \: and \: (2) \\  \\eq (1) \times 42 - \: eq (2) \times 9 \\  \\ we \: get \:  \\  \\ a = 3 \: d = 4 \\

Hence required AP is →

3,7,11,15,....,199

Similar questions