Math, asked by sairamphotography73, 8 months ago

In APQR and AXYZ, it is given that APQR-AXYZ, ZY+ZZ=90° and
XY : XZ = 3:4. Then find the ratio of sides in APQR.​

Answers

Answered by mathdude500
1

Answer:

 \boxed{\bf \:  PQ : QR :  PR \:  =  \: 3 :  5 : 4 \: }\\

Step-by-step explanation:

Given that, In triangle XYZ

\sf \:  \angle \: Y +  \angle \: Z =  {90}^{ \circ}  \\

We know, Sum of all interior angles of a triangle is 180°

So,

\sf \:   \angle \: X + \angle \: Y +  \angle \: Z =  {180}^{ \circ}  \\

\sf \:   \angle \: X + {90}^{ \circ} =  {180}^{ \circ}  \\

\sf \:   \angle \: X  =  {180}^{ \circ} - {90}^{ \circ}  \\

\implies\sf \:  \angle \: X = {90}^{ \circ} \\

Further given that,

\sf \: XY : XZ = 3 : 4 \\

\implies\sf \: \dfrac{XY}{XZ}  = \dfrac{3}{4}  \\

Also, given that

\sf \:  \triangle \: PQR \: \sim \:  \triangle \: XYZ \\

By corresponding parts of similar triangles, we have

\implies\sf \:  \angle \: P =  \angle \: X = {90}^{ \circ} \\

and

\sf \: \dfrac{PQ}{PR}  = \dfrac{XY}{XZ}  \\

\implies\sf \: \dfrac{PQ}{PR}  = \dfrac{3}{4}  \\

Let assume that

\sf \: PQ = 3k \\

\sf \: PR = 4k \\

Now, In right-angle triangle PQR

By Using Pythagoras Theorem, we have

\sf \:  {QR}^{2}  =  {PQ}^{2}  +  {PR}^{2}  \\

\sf \:  {QR}^{2}  =  {(3k)}^{2}  +  {(4k)}^{2}  \\

\sf \:  {QR}^{2}  =  {9k}^{2}  +  {16k}^{2}  \\

\sf \:  {QR}^{2}  =  {25k}^{2}  \\

\sf \:  {QR}^{2}  =  {(5k)}^{2}  \\

\implies\sf \: QR = 5k \\

Now, Consider

\sf \: PQ : QR :  PR \:  \\

\sf \:  =  \: 3k : 5k :  4k \:  \\

\sf \:  =  \: 3 : 5 :  4 \:  \\

Hence,

\implies\sf \: \boxed{\bf \:  PQ : QR :  PR \:  =  \: 3 :  5 : 4 \: }\\

Similar questions