In aright angle triangle ABC,right angled tab if tan A= 1 then show that 2sin A cosA=1
Answers
Answered by
1
Answer:
2sinAcosA = 1.
Step-by-step explanation:
= > tanA = 1
= > tanA = tan45°
= > A = 45°
= > 2A = 90°
= > sin( 2A ) = sin90°
= > sin2A = 1
From the trigonometric properties :
- sin2B = 2sinBcosB
Thus,
= > sin2A = 1
= > 2sinAcosA = 1
Hence proved.
Answered by
61
Question :-- In aright angle triangle ABC,right angled at B if tan A= 1 then show that 2sin A cosA=1 ?
Formula used :--
→ tan45° = 1
→ 2sinA*cosA = Sin2A .
→ Sin90° = 1
Solution :--
given, tan A = 1 ,
putting 1 = tan45° we get ,
→ tanA = tan45°
comparing now we get,
→ A = 45° ---------- Equation (1)
Now, we have to find , 2SinA*cosA = ?
→ 2SinA*cosA = sin2A
Putting value of A From Equation (1) we get,
→ Sin2A = Sin(2*45°)
→ Sin2A = Sin90°
→ Sin2A = 1
✪✪ Hence Proved ✪✪
So,
2sinA * cosA=1
Similar questions