In atriangle ABC angle C=90 and p and q are the points on BC and CA respectively such that CP =1/3BC and CQ =1/3AC Prove that 9(AP^2+BQ^2)=10AB^2
Answers
Answered by
0
Given it
CQ=1/3 AC
PC=1/3 BC
To proof that
9 (AP^2+BQ^2)=10AB^2
In ABC
AB^2=AC^2+BC^2
In APC
AP^2=AC^2+PC^2
AP^2=AC^2+(1/3BC)^2
AP^2=AC^2+(BC^2/9)
9AP^2=9AC^2+BC^2......... (1)
In BCQ
BQ^2=CQ^2+BC^2
BQ^2=(1/3AC)^2+BC^2
BQ^2=(AC^2/9)+BC^2
9BQ^2=9BC^2+AC^2....... (2)
Sum of eq (1)&(2)
9AP^2+9BQ^2=9AC^2+BC^2+9BC^2+ AC^2
9 (AP^2+BQ^2)=10AC^2+10BC^2
9 (AP^2+BQ^2)=10 (AC^2+BC^2)
9 (AP^2+BQ^2)=10 BC^2
Similar questions