in attachment BD is one of the diagonal of quadrilateral. ABCD . if AL prependicular BD and CM prependicular on BD , Show that ,
Area of quad.ABCD = 1/2 * BD * ( AL + CM ) ..
Attachments:
Answers
Answered by
2
given , AL is height of TriangleABD , CM is the height of triangleDBC , BD is the common base of both the triangleABD & TriangleDBC .
to prove - 1/2*BD* AL + CM
proof - in triangle ABD ,
area = [tex] \frac{1}{2} * base * height [/tex]
---------(eqn .i)
in triangle DBC,
area = [tex] \frac{1}{2} *base*height [/tex]
= ------------- ( eqn. ii )
on adding eqn. i & ii , we get ,
area of quad. ABCD = ar.( traingle ABD + triangle DBC )
= [tex] \frac{1}{2}+\frac{1}{2} * BD + BD * AL + CM [/tex]
= [tex] \frac{1}{2}+\frac{1}{2} * 2BD * AL + CM [/tex]
=
to prove - 1/2*BD* AL + CM
proof - in triangle ABD ,
area = [tex] \frac{1}{2} * base * height [/tex]
---------(eqn .i)
in triangle DBC,
area = [tex] \frac{1}{2} *base*height [/tex]
= ------------- ( eqn. ii )
on adding eqn. i & ii , we get ,
area of quad. ABCD = ar.( traingle ABD + triangle DBC )
= [tex] \frac{1}{2}+\frac{1}{2} * BD + BD * AL + CM [/tex]
= [tex] \frac{1}{2}+\frac{1}{2} * 2BD * AL + CM [/tex]
=
Answered by
0
The area of figure ABCD = ar(ΔABD)+ar(ΔCBD)
=⇒⇒⇒
=⇒⇒⇒
Similar questions