in bar graph 1 cm represents 30 km then the length of a bar graph need to represent 75 km is
Answers
Answer:
Answer:
\begin{gathered}\pink{\underline{ \large \bf \: answer}} \\ \\ \implies \bf\green{gravitational \: \: force} \\ \\ \implies{ \tt \: 1) = gravitation \: \: is \: \: a \: \: attractive \: \: force \: \: exist \: \: between \: \: any \: \: two \: \: object.} \\ \\ \implies 2) \tt= gravitational \: \: force \: \: pull \: \: objects \: \: together \\ \\ \implies \tt \: 3) = gravitational \: \: force \: \: is \: \: a \: \: universal \: \: force\\ \end{gathered}
answer
⟹gravitationalforce
⟹1)=gravitationisaattractiveforceexistbetweenanytwoobject.
⟹2)=gravitationalforcepullobjectstogether
⟹3)=gravitationalforceisauniversalforce
\
\begin{gathered} \implies \tt4) = gravitational \: \: force \: \: is \: \: a \: \: weak \: \: force.\\ \\ \implies \: 5) = \bf \: force \: = \frac{GM1M2}{ {r}^{2} } \\ \\ \implies{6 ) \tt = gravitational \: \: force \: \: is \: \: a \: \: vector \: \: quantity} \\ \\ \implies{7) \tt= gravitational \: \: force \: \: required \: \: two \: \: masses} \\ \\ \implies8) \tt= the \: \: direction \: \: of \: i\: gravitational \: \\ \tt \: \: \: \: \: \: \: \: \: \: \: \: \: \: force \: \: lies \: \: in \: \: the \: \: radial \: \: direction \: \: from \: \: the \: \: masses \\ \\ \implies9) \tt = gravitational \: force \: can \: be \: zero \: when \: the \: seperation \: between \: two \: object \: is \: infinity\\ \end{gathered}
⟹4)=gravitationalforceisaweakforce.
⟹5)=force=
r
2
GM1M2
⟹6)=gravitationalforceisavectorquantity
⟹7)=gravitationalforcerequiredtwomasses
⟹8)=thedirectionofigravitational
forceliesintheradialdirectionfromthemasses
⟹9)=gravitationalforcecanbezerowhentheseperationbetweentwoobjectisinfinity
\begin{gathered} \blue{\underline{ \large \bf \: gravity}} \ \ \\ \implies{1) \tt = gravity \: \: is \: \: an \: \: attractive \: force} \\ \\ \large \implies{2) \tt= gravity \: is \: not \: universal \: force} \\ \\ \implies{3) \tt=gravity \: is \: a \: strong \: force } \\ \\ \implies{4) \bf=force = mg } \\ \\ \implies{5) \tt = gravity \: is \: \: a \: vector \: field} \\ \\ \implies{6) = \tt \: gravity \: required\: only \: one \: masses} \\ \\ \implies{7) \tt=the \: field \: can \: be \: zero \: at \: the \: centre } \\ \\ \implies{8) \tt= its \: direction \: is \: \: towards \: \: the \: cente \: of \: earth}\end{gathered}
gravity
⟹1)=gravityisanattractiveforce
⟹2)=gravityisnotuniversalforce
⟹3)=gravityisastrongforce
⟹4)=force=mg
⟹5)=gravityisavectorfield
⟹6)=gravityrequiredonlyonemasses
⟹7)=thefieldcanbezeroatthecentre
⟹8)=itsdirectionistowardsthecenteofearth