English, asked by swapnil2011choudhari, 3 months ago

in case of uni univalent electrolytes and molecular conductivities are​

Answers

Answered by aarya1558
0

Answer:

l don't know

l am so sorry

Answered by kalivyasapalepu99
0

Near the end of the 19th century, the properties of electrolyte solutions were investigated extensively by the early workers in physical chemistry. A suggestion of Svante August Arrhenius, a Swedish chemist, that salts of strong acids and bases (for example, sodium chloride) are completely dissociated into ions when in aqueous solution received strong support from electrical-conductivity measurements and from molecular-weight studies (freezing-point depression, boiling-point elevation, and osmotic pressure). These studies showed that the number of solute particles was larger than it would be if no dissociation occurred. For example, a 0.001 molal solution of a uni-univalent electrolyte (one in which each ion has a valence, or charge, of 1, and, when dissociated, two ions are produced) such as sodium chloride, Na+Cl-, exhibits colligative properties corresponding to a nonelectrolyte solution whose molality is 0.002; the colligative properties of a 0.001 molal solution of a univalent-divalent electrolyte (yielding three ions) such as magnesium bromide, Mg2+Br2-, correspond to those of a nonelectrolyte solution with a molality of 0.003. At somewhat higher concentrations the experimental data showed some inconsistencies with Arrhenius’ dissociation theory, and initially these were ascribed to incomplete, or partial, dissociation. In the years 1920–30, however, it was shown that these inconsistencies could be explained by electrostatic interactions (Coulomb forces) of the ions in solution.

please mark my answer as brainliest

Similar questions