Math, asked by shlok7399, 6 months ago

In DABC, AB = 3 cm, BC = 4 cm and AC = 5 cm, find area of DABC.​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{In $\triangle$ABC, AB=3cm, BC=4cm, AC=5cm}

\textbf{To find:}

\text{Area of $\triangle$ABC}

\textbf{Solution:}

\boxed{\begin{minipage}{6cm}$\\\text{Area of triangle having sides a,b,c is}\\\\\text{Area}\mathrm{=\sqrt{s(s-a)(s-b)(s-c)}}\\\\\text{where}\;\mathrm{s=\dfrac{a+b+c}{2}}$\end{minipage}}

\text{Take the sides of the triangle as }

\text{a=3,\;b=4,\;c=5}

\mathrm{s=\dfrac{a+b+c}{2}=\dfrac{3+4+5}{2}=\dfrac{12}{2}=6}

\textbf{Area of triangle ABC}

\mathrm{=\sqrt{s(s-a)(s-b)(s-c)}}

\mathrm{=\sqrt{6(6-3)(6-4)(6-5)}}

\mathrm{=\sqrt{6{\times}3{\times}2{\times}1}}

\mathrm{=\sqrt{2{\times}3{\times}3{\times}2}}

\mathrm{=\sqrt{2^2{\times}3^2}}

\mathrm{=2{\times}3}

\mathrm{=6}\;\text{square units}

\textbf{Answer:}

\text{Area of given triangle is 6 square cm}

Find more:

Sides of the triangle are 13cm, 14cm and 15 cm, find the length of thesmallest altitude of the triangle.

https://brainly.in/question/17401153

Area of a triangle whose vertices are (a cos θ, b sinθ), (–a sin θ, b cos θ) and (–a cos θ, –b sin θ) is

https://brainly.in/question/10229938

Find the area of the triangle whose vertices are (-2,1),(3,1),(2,-3)​

https://brainly.in/question/14905272

Similar questions