Math, asked by BrainlyBerilius, 1 month ago

In diagram , Find tan P - Cot R

Attachments:

Answers

Answered by Theking0123
674

Given:-    

  • PQ = 12 cm
  • PR = 13 cm

To find:-    

  • tan P - cot R

Solution:-  

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad}

Finding side QR,

~Applying Pythagoras theorem

\qquad\sf{:\implies\:(\:Hypotenuse\:)^{2}\:=\:(\:Height\:)^{2}\:+\:(\:Base\:)^{2}}

\qquad\sf{:\implies\:(\:PR\:)^{2}\:=\:(\:PQ\:)^{2}\:+\:(\:QR\:)^{2}}

\qquad\sf{:\implies\:(\:13\:)^{2}\:=\:(\:12\:)^{2}\:+\:(\:QR\:)^{2}}

\qquad\sf{:\implies\:169\:=\:144\:+\:(\:QR\:)^{2}}

\qquad\sf{:\implies\:(\:QR\:)^{2}\:=\:169\:-\:144}

\qquad\sf{:\implies\:(\:QR\:)^{2}\:=\:25}

\qquad\sf{:\implies\:QR\:=\:\sqrt{25} }

\qquad\sf{:\implies\:QR\:=\:5\:cm}

Therefore side QR is 5 cm.

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad}

~Now tan P

\qquad\sf{:\implies\:tan\:P\:=\:\dfrac{QR}{PQ}}

\qquad\sf{:\implies\:tan\:P\:=\:\dfrac{5}{12}}

Therefore tan P is 5/12

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad}

~Now cot R

\qquad\sf{:\implies\:cot\:R\:=\:\dfrac{QR}{PQ}}

\qquad\sf{:\implies\:cot\:R\:=\:\dfrac{5}{12}}

Therefore cot R is 5/12

\qquad\qquad\underline{\qquad\qquad\qquad\qquad\qquad\qquad}

~finding tan P - Cot R

\qquad\sf{:\implies\:tan\:P\:-\:cot\:R}

\qquad\sf{:\implies\:\dfrac{5}{12}\:-\dfrac{5}{12}}

\qquad\sf{:\implies\:0}

Attachments:
Answered by BrainIyKohinoor
354

Answer:

  • Correct answer is 0

Step-by-step explanation:

Similar questions