Math, asked by Eswargunisetty, 1 year ago

in differention chapter

Attachments:

Answers

Answered by Anonymous
53

Question :

Find \dfrac{dy}{dx} ,if

y =  \sqrt{ \sin(x) + \sqrt{ \sin(x) + ....... +  \infty  }   }

Formula's :

• Some standard Formula's

1) \dfrac{d(sinx)}{dx}  = cosx

2) \dfrac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

3) \dfrac{d(constant)}{dx}  = 0

{\red{\boxed{\large{\bold{Chain\:Rule}}}}}

Let y=f(t) ,t=g(u) and u= m(x),then

 \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

We to Find \dfrac{dy}{dx}, if

y =  \sqrt{sinx +  \sqrt{sinx + .... +  \infty } }

 \implies y =  \sqrt{sinx + y}

Now squaring on both sides

 \implies \: y {}^{2}  = sinx + y

 \implies \: y {}^{2}  - y = sinx

Now differinate with respect to x

 \implies \: 2y \dfrac{dy}{dx} -  \dfrac{dy}{dx}  = cosx

 \implies  \dfrac{dy}{dx} (2y - 1) = cosx

 \implies \:  \dfrac{dy}{dx}  =  \dfrac{cosx}{2y - 1}

Similar questions