Math, asked by sunainakapoor2, 1 year ago

In each of following examples find the co-ordinates of point A which divides segmentPQ in ration a:b
1)P(-3,4) Q(1,-4)a:b=2
2)P(-2,-5)Q(4,3)a:b=3:4
3)P(2,6)Q(-4,1)a:b=1:2

Answers

Answered by rakeshmohata
10
Hope u like my process
=====================
Formula used here
=-=-=-=-=-=-=-=-=-=-=
 \bf \underline{co - ordinates} \\  \\  =  > x =  \frac{mx _{2} + nx _{1} }{m + n}  \\  \\  =  > y =  \frac{m y_{2} + ny _{1} }{m + n}  \\  \\  \bf \: where \:  \: m :n = ratio \:  \: of \:  \: division
__________________________
For

1)
Ratio = 2:1 =m:n
 =  > x =  \frac{ (1 \times 2) +  (- 3 \times 1)}{2 + 1}   \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   =  \frac{2 - 3}{3}  =   \bf \underline{-  \frac{1}{3} } \\  \\  =  > y =  \frac{( - 4 \times2 ) + ( 4\times1) }{2 + 1}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  =  \frac{ - 8 + 4}{3}     =  \bf \underline{ -  \frac{4}{3} }

So, A =( - ⅓, - 4/3)

_________________________
2)
Ratio = 3:4

 =  > x =  \frac{ ( 4 \times  3) +  ( - 2 \times 4)}{3+4}   \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   =  \frac{ 12 - 8}{7}  =   \bf \underline{  \frac{4}{7} } \\  \ \\ =  > y =  \frac{( 3 \times3 ) + (  - 5\times4) }{3 + 4}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  =  \frac{ 9 - 2 0  }{7}     =  \bf \underline{ -  \frac{11}{7} }

So, A = (4/7, - 11/7)
__________________________
3)

Ratio = 1:2

 =  > x =  \frac{ ( - 4 \times1 ) +  ( 2\times 2)}{ 1 + 2}   \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   =  \frac{ - 4 + 4}{3}  =   \bf \underline{0} \\  \\  =  > y =  \frac{( 1  \times 1 ) + ( 6\times2) }{ 1 + 2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  =  \frac{ 1 + 12}{3}     =  \bf \underline{  \frac{13}{3} }
So, A = (0, 13/3)

________________________
Hope this is ur required answer

Proud to help you
Similar questions