Math, asked by kamaldeepkaur9634, 10 months ago

In each of the following, determine whether the given numbers are roots of the given
equations or not:
(i) x2 – 5x + 6 = 0; 2,-3
(ii) 3x2 – 13x – 10 = 0; 5,-2/3

Answers

Answered by davisshikhar
8
  • 1st equation

substituting \: value \: of \: x = 2 \\ we \: get \:  \\ x {}^{2}  - 5x + 6 = 0 \\ (2) {}^{2}  - 5(2) = 0 - 6 \\ 4 - 10 =  - 6 \\  - 6 =  - 6 \: \\  hence \: the \: given \: no. \: is \: a \: root \: of \: eq {}^{n}

substituting \: value \: of \: x =  - 3 \\ x {}^{2}  - 5x + 6  = 0 \\ ( - 3) {}^{2}  - 5( - 3) + 6 = 0 \\ 9 - 15 =  - 6 \\  - 6 =  -  \\ hence \:  2 \: and \:  - 3 \: are \: root \: of \: given \: eq {}^{n}

  • 2nd equation

3x {}^{2}  - 13x  - 10 = 0 \\ subst. \: value \: of \: x = 5 \\ 3(5) {}^{2}  - 13(5)  - 10 = 0 \\ 75 - 65 =  10 =  10 \\ thus \: 5 \: is \:  \: a \: root \: of \: eq {}^{n}

subs. \: value \: of \: x =   \frac{ - 2}{3}  \\ 3( \frac{ - 2}{3} ) {}^{2}  - 13( \frac{ - 2}{3})  - 10 = 0

 \frac{4}{3}   +  \frac{26}{3}  = 10 \\  \frac{30}{3}  = 10 \\ 10 = 10 \\ hence \: both \: no. \: are \: root \: of \: eq {}^{n}  \\ i \: have \: used \: \\  eq {}^{n}  \: instead \: of \: equation \\ and \:  \\  \: subst. \: instead \: of \: substituting \\ hope \: it \: helps

Similar questions