Math, asked by Niks6906, 11 months ago

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example. (i) If x∈A and A∈B, then x∈B (ii) If A⊂B and B∈C, then A∈C (iii) If A⊂B and B⊂C, then A⊂C (iv) If A⊄B and B⊄C, then A⊄C (v) If x∈A and A⊄B, then x∈B (vi) If A⊂B and x∉B, then x∉A

Answers

Answered by amitnrw
2

Given :  (i)   x∈A and A∈B, then x∈B (ii) If A⊂B and B∈C, then A∈C

To find : Show which are true & Which are False

Solution:

⊂  - Subset

A ⊂ B  ( all elements of A are in B & B may have extra elements)

∈  - Belongs to elements in set

(i) If x∈A and A∈B, then x∈B

FALSE

Let say  A = { 1 , 2  }     & B  = { {1 , 2}   , 3 }  => A∈B

x = 1  , x  = 2  as x ∈A  

1 , 2  ∉  { {1 , 2}   , 3 }

=> x ∉B

(ii) If A⊂B and B∈C, then A∈C

FALSE

A = {  2}   B  = { 1 , 2  }   C = { {1 , 2} ,3  }

A⊂B      B∈C

{ 2}  ∉ C = { {1 , 2} ,3  }

=> A ∉C

(iii) If A⊂B and B⊂C, then A⊂C

TRUE

A = { 1 , 2}   B  = { 1 , 2 , 3 }   C = { 1 , 2 , 3 , 4 }

A⊂B and B⊂C

{ 1 , 2}  ⊂ { 1 , 2 , 3 , 4 }

=> A⊂C

(iv) If A⊄B and B⊄C, then A⊄C

FALSE

A = { 1 , 2 }    B  = { 3 , 4 }   C = {  1 , 2 }

A⊄B  , B⊄C,    but  { 1 , 2 }  ⊂ {  1 , 2 }

=> A ⊂C

(v) If x∈A and A⊄B, then x∈B

FALSE

A = {  1  , 2 }    B = { 3  }

x = 1  , 2

1 , 2  ∉ { 3  }

=> x ∉ B

(vi) If A⊂B and x∉B, then x∉A

TRUE

A = { 1 }   B = { 1 , 2}

x = 3

3 ∉B

3 ∉ { 1 }

=> x ∉ A

Learn more:

If u={1,2,3,4,5}. A subset S is chosen uniformly at random from a non ...

https://brainly.in/question/15171468

Write the subset relations between the following sets. X = set of all ...

https://brainly.in/question/4869987

Similar questions