Math, asked by Niks6906, 9 months ago

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example. (i) If x∈A and A∈B, then x∈B (ii) If A⊂B and B∈C, then A∈C (iii) If A⊂B and B⊂C, then A⊂C (iv) If A⊄B and B⊄C, then A⊄C (v) If x∈A and A⊄B, then x∈B (vi) If A⊂B and x∉B, then x∉A

Answers

Answered by amitnrw
2

Given :  (i)   x∈A and A∈B, then x∈B (ii) If A⊂B and B∈C, then A∈C

To find : Show which are true & Which are False

Solution:

⊂  - Subset

A ⊂ B  ( all elements of A are in B & B may have extra elements)

∈  - Belongs to elements in set

(i) If x∈A and A∈B, then x∈B

FALSE

Let say  A = { 1 , 2  }     & B  = { {1 , 2}   , 3 }  => A∈B

x = 1  , x  = 2  as x ∈A  

1 , 2  ∉  { {1 , 2}   , 3 }

=> x ∉B

(ii) If A⊂B and B∈C, then A∈C

FALSE

A = {  2}   B  = { 1 , 2  }   C = { {1 , 2} ,3  }

A⊂B      B∈C

{ 2}  ∉ C = { {1 , 2} ,3  }

=> A ∉C

(iii) If A⊂B and B⊂C, then A⊂C

TRUE

A = { 1 , 2}   B  = { 1 , 2 , 3 }   C = { 1 , 2 , 3 , 4 }

A⊂B and B⊂C

{ 1 , 2}  ⊂ { 1 , 2 , 3 , 4 }

=> A⊂C

(iv) If A⊄B and B⊄C, then A⊄C

FALSE

A = { 1 , 2 }    B  = { 3 , 4 }   C = {  1 , 2 }

A⊄B  , B⊄C,    but  { 1 , 2 }  ⊂ {  1 , 2 }

=> A ⊂C

(v) If x∈A and A⊄B, then x∈B

FALSE

A = {  1  , 2 }    B = { 3  }

x = 1  , 2

1 , 2  ∉ { 3  }

=> x ∉ B

(vi) If A⊂B and x∉B, then x∉A

TRUE

A = { 1 }   B = { 1 , 2}

x = 3

3 ∉B

3 ∉ { 1 }

=> x ∉ A

Learn more:

If u={1,2,3,4,5}. A subset S is chosen uniformly at random from a non ...

https://brainly.in/question/15171468

Write the subset relations between the following sets. X = set of all ...

https://brainly.in/question/4869987

Similar questions