In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
(iv)
(v)
(vi)
Answers
SOLUTION
(iv) Given : sinθ = 11/15
sin θ = 11/15 = Perpendicular/ Hypotenuse
In right ∆ ABC ,
Perpendicular side (BC) = 11 and
Hypotenuse (AC) = 15
By using Pythagoras theorem,
AC² = AB² + BC²
15² = AB² + 11²
AB² = 15² – 11²
AB² = 225 – 121
AB² = 104
AB= √104 = √2×2×2×13 = √4 × 2 ×13
Hence, Base (AB) = 2√26
Now, cos θ=Base/Hypotenuse
cos θ =2√26 / 15
cosec θ = Hypotenuse/Perpendicular
cosec θ = 15/11
sec θ = Hypotenuse / Base
sec θ = 15/2√26
tan θ = Perpendicular /Base
tan θ = 11/2√26
cot θ = Base/ Perpendicular
cot θ = 2√26/11
(v) Given : tan α = 5/12
tan α = 5/12 = Perpendicular /Base
In right ∆ ABC ,
Perpendicular (BC) = 5
Base (AB) = 12
By using Pythagoras theorem,
AC² = AB² + BC²
AC² = 12² + 5²
AC² = 144+ 25
AC² = 169
AC = √169
AC = 13
Hence, Hypotenuse (AC) = 13
Now, sin α = Perpendicular/ Hypotenuse
sin α = 5/13
cos α = base/Hypotenuse
cos α = 12/13
cosec α = Hypotenuse/Perpendicular
cosec α =13/5
sec α = Hypotenuse / Base
sec α = 13/12
cot α = Base/ Perpendicular
cot α = 12/5
(vi) Given : sin θ = √3/2
sin θ = √3/2 = Perpendicular/ Hypotenuse
In right ∆ ABC ,
Perpendicular side (BC) = √3 and
Hypotenuse (AC) = 2
By using Pythagoras theorem,
AC² = AB² + BC²
2² = AB² + (√3)²
AB² = 2² – (√3)²
AB² = 4 - 3
AB² = 1
AB= √1 = 1
AB = 1
Hence, Base (AB) = 1
Now, cos θ = Base/Hypotenuse
cos θ = 1/2
cosec θ = Hypotenuse/Perpendicular
cosec θ = 2/√3
sec θ = Hypotenuse / Base
sec θ = 2/1
tan θ = Perpendicular /Base
tan θ = √3/1
cot θ = Base/ Perpendicular
cot θ = 1/√3
HOPE THIS ANSWER WILL HELP YOU.
Step-by-step explanation:
cot teta = 2 root 26/11
IF IT HELPS YOU
MARK AS BRAINLIEST PLEASE