In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
(x)
(xi)
(xii)
Answers
SOLUTION
(x) Given : sec θ = 13/5
sec θ = 13/5 = Hypotenuse /base
In right ∆ ABC ,
Base (AB) = 5
Hypotenuse (AC) = 13
By using Pythagoras theorem,
AC² = AB² + BC²
13² = 5² + BC²
169 = 25 + BC²
BC² = 169 - 25
BC² = 144
BC = √144
BC = 12
Hence, Perpendicular side (BC) = 12
Now, sin θ = Perpendicular/ Hypotenuse
sin θ = 12/13
cos θ = Base/Hypotenuse
cos θ = 5/13
cosec θ = Hypotenuse/Perpendicular
cosec θ = 13/12
sec θ = Hypotenuse / Base
sec θ = 13/5
tan θ = Perpendicular /Base
tan θ = 12/5
cot θ = Base/ Perpendicular
cot θ= 5/12
(xi) Given : cosec θ = √10
cosec θ = √10/1 = Hypotenuse / Perpendicular
In right ∆ ABC ,
Perpendicular side (BC) = 1 and
Hypotenuse (AC) = √10
By using Pythagoras theorem,
AC² = AB² + BC²
(√10)² = AB² + (1)²
AB² = (√10)² – (1)²
AB² = 10 - 1
AB² = 9
AB= √9 = 3
AB = 3
Hence, Base (AB) = 3
sin θ = Perpendicular/Hypotenuse
sin θ = 1/√10
cos θ = Base/Hypotenuse
cos θ = 3/√10
sec θ = Hypotenuse / Base
sec θ = √10/3
tan θ = Perpendicular /Base
tan θ = 1/3
cot θ = Base/ Perpendicular
cot θ = 3/1= 3
(xii) Given : Cos θ = 12/15
Cos θ = 12/15 = Base/Hypotenuse
In right ∆ ABC ,
Base (AB) = 12
Hypotenuse (AC) = 15
By using Pythagoras theorem,
AC² = AB² + BC²
15² = 12² + BC²
225 = 144 + BC²
BC² = 225 - 144
BC² = 81
BC = √81
BC = 9
Hence, Perpendicular side (BC) = 9
Now, sin θ = Perpendicular/ Hypotenuse
sin A = 9/15
cosec θ = Hypotenuse/Perpendicular
cosec θ = 15/9
sec θ = Hypotenuse / Base
sec θ = 15/12
tan θ = Perpendicular /Base
tan θ = 9/12
cot θ = Base/ Perpendicular
cot θ= 12/9
HOPE THIS ANSWER WILL HELP YOU..