In each of the following two polynomials, find the value of a, if x+a is a factor:
(i) x³+ax²-2x+a+4
(ii) x⁴-a²x²+3x-a
Answers
(i) The value of a is
(ii) The value of a is 0
Step-by-step explanation:
Given polynomials are (i)
(ii)
Also given that x+a is a factor for the given two polynomials.
To find the value of a in the polynomial :
(i)
By using the Synthetic Division we can solve this cubic expression.
since x+a is a factor so it satisfies the given equation
-a_| 1 a -2 a+4
0 -a 0 2a
_________________
1 0 -2 a+4+2a=0
- a+4+2a=0
- 3a+4=0
Therefore the value of a is
(ii)
By using the Synthetic Division we can solve this expression.
since x+a is a factor so it satisfies the given equation
-a_| 1 0 3 -a
0 -a 0 -3a
__________________________
1 -a 0 3 -4a=0
- -4a=0
- a=0
Therefore the value of a is 0
Answer:
1)
Step-by-step explanation:
Let p(x) = x³ + ax² - 2x + a + 4 ... (i) X Since, (x + a) is a factor of p(x), so p(-a)
Let p(x) = x³ + ax² - 2x + a + 4 ... (i) X Since, (x + a) is a factor of p(x), so p(-a)= 0
Let p(x) = x³ + ax² - 2x + a + 4 ... (i) X Since, (x + a) is a factor of p(x), so p(-a)= 0Put x = -a in equation (i), we get p(-a) = (-a)³ + a(-a)²-2(-a) + a + 4 = -a³ + a(a²) + 2a + a + 4 = -a³ + a³ + 3a + 4 = 3a + 4
Let p(x) = x³ + ax² - 2x + a + 4 ... (i) X Since, (x + a) is a factor of p(x), so p(-a)= 0Put x = -a in equation (i), we get p(-a) = (-a)³ + a(-a)²-2(-a) + a + 4 = -a³ + a(a²) + 2a + a + 4 = -a³ + a³ + 3a + 4 = 3a + 4But p(-a) = 0 → 3a + 4 = 0
Let p(x) = x³ + ax² - 2x + a + 4 ... (i) X Since, (x + a) is a factor of p(x), so p(-a)= 0Put x = -a in equation (i), we get p(-a) = (-a)³ + a(-a)²-2(-a) + a + 4 = -a³ + a(a²) + 2a + a + 4 = -a³ + a³ + 3a + 4 = 3a + 4But p(-a) = 0 → 3a + 4 = 0→ 3a = -4
→ a = -4/3
2)
Let f(x) = x4-a²x²+3x-a
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)f (-a) = 0
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)f (-a) = 0(-a) 4-a²(-a)²+3(-a)-a = 0
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)f (-a) = 0(-a) 4-a²(-a)²+3(-a)-a = 0a4-a4-3a-a = 0
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)f (-a) = 0(-a) 4-a²(-a)²+3(-a)-a = 0a4-a4-3a-a = 0-4a = 0
Let f(x) = x4-a²x²+3x-a(x+a) is a factor of f (x)f (-a) = 0(-a) 4-a²(-a)²+3(-a)-a = 0a4-a4-3a-a = 0-4a = 0a = 0
Hope it is helpful