Math, asked by monalisachakrab7742, 10 months ago

In each of the following, use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not:
f(x) = 3x⁴+17x³+9x²-7x-10, g(x) = x+5

Answers

Answered by ashishks1912
3

The expression g(x)=x+5 is a factor for the polynomial f(x)=3x^4+17x^3+9x^2-7x-10 is verified.

Step-by-step explanation:

Given that the polynomial f(x)=3x^4+17x^3+9x^2-7x-10

and g(x)=x+5

To verify that polynomial g(x) is a factor of polynomial f(x) or, not :

By using the Factor theorem here

  • Since x+5 is a factor (given)
  • so that x=-5

Put x=-5 in the polynomial f(x) we get

  • f(-5)=3(-5)^4+17(-5)^3+9(-5)^2-7(-5)-10
  • =3(625)+17(-125)+9(25)+35-10
  • =1875-2125+225+25
  • =2125-2125
  • =0
  • f(-5)=0
  • Therefore x+5 is a factor and it satisfies the given polynomial.( by factor theorem )
  • Hence g(x)=x+5 is a factor for the polynomial f(x)

                   3x^3+2x^2-x-2

              ____________________________

       x+5) 3x4+17x^3+9x^2-7x-10

                  3x^4+15x^3

                  ___(-)___(-)__________________________

                            2x^3+9x^2

                            2x^3+10x^2

           ______(-)____(-)_______________

                                      -x^2-7x

                                      -x^2-5x

        _____________(+)__(+)_________________

                                               -2x-10

                                               -2x-10

                                            _(+)_(+)________

                                                       0  

                                             _____________

Hence the expression g(x)=x+5 is a factor for the polynomial f(x)

Hence verified                                                                                                        

Similar questions