in equilateral triangle abc, BC perpendicular AD such that d is a point on BC then show that bc square = 4( AC square minus AD square)
Answers
Answered by
3
Here, triangle ABC is an equilateral triangle,
That is, AB = BC= CA
And,AD⊥BC
Thus, by the property of equilateral triangle,
AD must be the bisector of side BC.
That is, BD = DC = {1}{2} BCBD=DC=21BC
By the Pythagoras theorem,
AD^2 = AB^2 -BD^2AD2=AB2−BD2 ------(1)
And, AD^2 = AC^2 -CD^2AD2=AC2−CD2 -------(2)
By adding equation (1) and (2),
We get,
2 AD^2 = AB^2 + AC^2 - (BD^2 + CD^2)2AD2=AB2+AC2−(BD2+CD2)
2 AD^2 =AC^2 + AC^2 - ((\frac{1}{2} BC)^2 + (\frac{1}{2} BC)^2)2AD2=AC2+AC2−((21BC)2+(21BC)2)
2 AD^2 = 2 AC^2 - (\frac{1}{4} BC^2 + \frac{1}{4} BC^2)2AD2=2AC2−(41BC2+41BC2)
2 AD^2 = 2 AC^2 - (\frac{1}{4} BC^2 + \frac{1}{4} BC^2)2AD2=2AC2−(41BC2+41BC2)
2 AD^2 = 2 AC^2 - \frac{1}{2} BC^22AD2=2AC2−21BC2
2 AD^2 - 2 AC^2 = - \frac{1}{2} BC^22AD2−2AC2=−21BC2
4 AD^2 - 4 AC^2 = - BC^24AD2−4AC2=−BC2
4 AD^2 - 4 AC^2 = - BC^24AD2−4AC2=−BC2
4 ( AC^2 - AD^2)= BC^24(AC2−AD2)=BC2
Hence proved.
hope this answer will help you.
That is, AB = BC= CA
And,AD⊥BC
Thus, by the property of equilateral triangle,
AD must be the bisector of side BC.
That is, BD = DC = {1}{2} BCBD=DC=21BC
By the Pythagoras theorem,
AD^2 = AB^2 -BD^2AD2=AB2−BD2 ------(1)
And, AD^2 = AC^2 -CD^2AD2=AC2−CD2 -------(2)
By adding equation (1) and (2),
We get,
2 AD^2 = AB^2 + AC^2 - (BD^2 + CD^2)2AD2=AB2+AC2−(BD2+CD2)
2 AD^2 =AC^2 + AC^2 - ((\frac{1}{2} BC)^2 + (\frac{1}{2} BC)^2)2AD2=AC2+AC2−((21BC)2+(21BC)2)
2 AD^2 = 2 AC^2 - (\frac{1}{4} BC^2 + \frac{1}{4} BC^2)2AD2=2AC2−(41BC2+41BC2)
2 AD^2 = 2 AC^2 - (\frac{1}{4} BC^2 + \frac{1}{4} BC^2)2AD2=2AC2−(41BC2+41BC2)
2 AD^2 = 2 AC^2 - \frac{1}{2} BC^22AD2=2AC2−21BC2
2 AD^2 - 2 AC^2 = - \frac{1}{2} BC^22AD2−2AC2=−21BC2
4 AD^2 - 4 AC^2 = - BC^24AD2−4AC2=−BC2
4 AD^2 - 4 AC^2 = - BC^24AD2−4AC2=−BC2
4 ( AC^2 - AD^2)= BC^24(AC2−AD2)=BC2
Hence proved.
hope this answer will help you.
Attachments:
Similar questions