Math, asked by MAYAKASHYAP5101, 1 year ago

In fig .12.27 , AB and CD are the two diameter of a circle ( with centre O ) prepandicular to each other and OD is the diameter of the smaller circle . If OA = 7cm , find the area of the shaded region ?

Attachments:

Answers

Answered by siddhartharao77
39

Answer:

66.5 cm²

Step-by-step explanation:

Given, Radius of larger circle R = OA = OB = OD = 7 cm.

Then, radius of smaller circle (r) = 3.5 cm.

From ΔBCA:

Base = OC = 7 cm.

Height = AB = 14 cm.

Area = (1/2) * OC * AB

        = (1/2) * 7 * 14

        = 49 cm²


Now,

(i) Area of larger circle = πR²

                                     = (22/7) * (7)²

                                     = 154 cm²


(ii) Area of larger semicircle = πR²/2

                                              = 154/2

                                              = 77 cm²


(iii) Area of smaller circle = πr²

                                         = (22/7) * (3.5)²

                                         = 38.5 cm²


Area of shaded region :

= Area of larger semicircle - Area of ΔBCA + Area of smaller semicircle

= 77 - 49 + 38.5

= 66.5 cm²

Therefore, Area of the shaded region = 66.5 cm²


Hope it helps!

Answered by anjali17103
7

Area of a circle = pie r ²

= 154 cm²


Area of shaded region = r² (pie theta/ 360- sin theta / 2)


= 14 cm²

Similar questions