Math, asked by PratigyaMuud, 2 days ago

In Fig. 12.55 sectors of two concentric circles of radii 7 cm and 14 cm are given. Find the area of the shaded region if central angle is 60°. -7 cm 60° 14 cm DO -​

Answers

Answered by itzmedipayan2
4

Answer:

Area of region OAB

 =   \frac{60}{360}   \times \pi \times  {7}^{2}  \\  \\  =  \frac{1}{  {  \cancel6}  \: ^{3} }  \times  \frac{ \cancel{22}  \: ^{11} }{ \cancel7}  \times  \cancel7 \times 7 \\  \\  =  \frac{77}{3} {cm}^{2}

Area of region OCD

 =  \frac{60}{360} \times \pi \times 14 \times 14 \\ \   \\ \sf \: after \: simplifying \\  \\ =  \frac{11 \times 2 \times 14}{3} \\  \\  =  \frac{22 \times 14}{3}  =  \frac{308}{3}

So area of shaded region =area of region OCD-area of OCD

 =  \frac{308}{3}  -  \frac{77}{3} \\  \\  =   \frac{1}{3}  \times 23  =  {77cm}^{2}

Hope it helps you from my side

:)

Similar questions