Math, asked by dagars405, 11 months ago

In Fig. 14.40, a right triangle BOA is given. C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices 0, A and B.

Attachments:

Answers

Answered by KailashHarjo
8

We have to prove that vertices A, B and O are equidistant from C of right triangle BOA where C is the midpoint of AB

  • Distance of A from O -: 2a and Distance of B from O -: 2b
  • Applying pythagoras theorem, OC² + AC² = OA²                     (1)
  • Similarly, OC² + BC² = OB²                                                          (2)
  • Applying pythagoras theorem to triangle OAC, OA² + OB² = AB²
  • substituting, (2a)² + (2b)² = AB²
  • 4a² + 4b² = AB²
  • AB = 2√a² +b²
  • therefore, AC=BC=√a²+b²                       (3)
  • From (1), we get - OC² + a²+b² = 4a²
  • OC² = 3a²-b²
  • similarly, from (2), we get - OC² + a²+b² = 4b²
  • OC² = 3b²-a²
  • Hence, 3b²-a² = 3a²-b²
  • 4b² = 4a² ;  b² = a²
  • Now, from (3) we get, AC=BC= √a²+a² ; a√2
  • OC² = 3a²-b² = 3a² - a² = 2a²
  • OC = a√2
  • Hence, OC=AC=BC
  • therefore, C is equidistant from vertices O, A and B
Similar questions