Physics, asked by junaid221, 1 month ago

In Fig. 2.102, three negative charges each amount -q and three positive charges +9, +qand +Q are placed alternately on the vertices of a regular hexagon. If the electric field intensity at o due to the charges at A, B, C, D, E is double that at O due to the charge Q, what will be the value of Q?

Attachments:

Answers

Answered by vipinkumar212003
8

.

electric \: field \: due \: to \: two \: charges \\  + q \: and \:  - q \:  on \: the \: axis \: of \: each \: line. \\  \\ E_O= \frac{2kq}{ {a}^{2} }  + \frac{2kq}{ {a}^{2} }  = \frac{4kq}{ {a}^{2} } \\  \blue{ \underline{Taking \: resultant \: of \: AD \: and \: BE} : } \\ E_R =  \sqrt{ {E}^{2}_O  + {E}^{2}_O + 2EE \cos 120°}  \\  =  \sqrt{2{E}^{2}_O  +2 {E}^{2}_O \times (  - \frac{1}{2} )}  \\  = E_O =  \frac{4kq}{ {a}^{2} } \\  \blue{ \underline{Electric \: field \: on \: centre \: O \: on \: line \: CF}} \\ E'_O   =  \frac{2kq}{ {a}^{2} }  +  \frac{kQ}{ {a}^{2} }  =  \frac{k}{ {a}^{2} }(2q + Q) \\  E_{net} = 0 \\ E'_O  + ( - E_{R}) = 0 \\ E'_O  =  E_{R} \\ \frac{k}{ {a}^{2} }(2q + Q) = \frac{4kq}{ {a}^{2} } \\ 2q + Q = 4q \\  \boxed{Q =  + 2q} \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Attachments:
Similar questions