Math, asked by swaroop252, 11 months ago

-In Fig. 2, IF DE || BC, then x equals
(a) 6 cm
(b) 8 cm
(c) 10 cm
(d) 12.5

Attachments:

Answers

Answered by Anonymous
20

❏ Question:-

If DE||BC then find the value of x

\setlength{\unitlength}{1 cm}\begin{picture}(12,4)\thicklines\put(4.8,6){$.$}\put(5.6,5.9){$B$}\put(10.2,5.9){$C$}\put(7.8,10.2){$A$}\put(6.6,7.9){$D$}\put(9.08,7.9){$E$}\put(7.7,7.7){$4\:cm$}\put(7.7,5.7){$x\:cm$}\put(6.6,9){$2\:cm$}\put(5.7,7){$3\:cm$}\put(6,6){\line(1,0){4}}\put(7,8){\line(1,0){2}}\put(6,6){\line(1,2){2}}\put(10,6){\line(-1,2){2}}\end{picture}

options:-

(a)6 cm

(b)8 cm

(c)10 cm

(d)12.5 cm

❏ Solution:-

✏ Given:-

  • DE||BC
  • AD=2 cm
  • BD=3 cm
  • DE=4 cm
  • BC=x cm.

To Find:-

  • value of x = ?

Explanation :-

\setlength{\unitlength}{1 cm}\begin{picture}(12,4)\thicklines\put(4.8,6){$.$}\put(5.6,5.9){$B$}\put(10.2,5.9){$C$}\put(7.8,10.2){$A$}\put(6.6,7.9){$D$}\put(9.08,7.9){$E$}\put(6.6,9){$a\:cm$}\put(5.7,7){$b\:cm$}\put(6,6){\line(1,0){4}}\put(7,8){\line(1,0){2}}\put(6,6){\line(1,2){2}}\put(10,6){\line(-1,2){2}}\end{picture}

Now, We know that ,

\sf\implies DE=\frac{a}{a+b}\times BC

here, DE=4 cm ; a=2 cm ; b=3 cm ;

∴ Value of BC,

\sf\implies 4=\frac{2}{2+3}\times BC

\sf\implies 4\times5=2\times BC

\sf\implies \frac{\cancel{20}}{\cancel2}=BC

\sf\implies \boxed{\large{\red{BC=x= 10 \:cm}}}

∴ The value of x = 10 cm.

option (C) 10 cm.

Answered by karkiupasna
6

Answer:

(c)10cm

Step-by-step explanation:

given

  1. DE//BC
  2. AD=2cm
  3. BD=3cm
  4. DE=4cm

to \: find \:  \: x

Solutions;

ADE and ABC

angle A = angle A (common)

ANGLE ADE = ANGLE ABC

ADE ~ ABC

In photo

Attachments:
Similar questions