Math, asked by nehahareesh95, 4 months ago

In Fig. 20.38, a parallelogram is drawn in a trapezium, the area of the parallelogram is 80 cm² ,find the area of the trapezium. pls reply fast.​

Attachments:

Answers

Answered by MoodyCloud
53

Answer:

  • Area of trapezium is 128 cm².

Step-by-step explanation:

Given that,

Area of parallelogram is 80 cm².

Height of parallelogram and height of trapezium will be same.

So,

Let, The height of parallelogram be h.

Base of parallelogram = 10 cm.

Because opposite sides of parallelogram are equal and parallel.

Area of parallelogram = Base × height

Put the values :

⇒80 = 10 × h

⇒80/10 × h

h = 8

Height of parallelogram is 8 cm.

Then,

Height of trapezium will be also 8 cm.

Now,

We know that,

Area of trapezium = (a + b)/2 × h

Where,

  • a and b are parallel sides of trapezium.
  • h is height of trapezium.

Put, a, b and h in formula :

⇒Area = (10 + 22)/2 × 8

⇒Area = 32/2 × 8

⇒Area = 16 × 8

Area = 128

Therefore,

Area of trapezium is 128 cm².

Attachments:
Answered by sara122
7

  \huge\tt { \underline \red{given}} \hookrightarrow

  • The area of the parallelogram 80 cm².

  • The length of the parallel sides of the trapezium 22 cm and 10 cm.

  • The base of the parallelogram 10 cm.

 \\  \\

 \huge\tt { \underline \red{to \: find}} \hookrightarrow

(The height of the parallelogram and the height of the trapezium is same.)

 \\  \\

  • Height of the trapezium .

  • Area of the trapezium.

 \\  \\

 \huge\tt { \underline \red{formula \: used \: }} \hookrightarrow

 \\  \large  \bigstar\tt area \: of \: the \: parallelogram \:  =  \boxed{\red \tt{ \tt \: base} \:  \times  \tt\blue { height} }\\  \\  \large \bigstar \tt \: area \: of \: the \: trapezium \:  =  \boxed{  \pink \tt{\frac{(a + b)}{2} } \times  \tt \:  \blue {height }\: }

( here a and b are the length of the parallel sides of the trapezium )

 \\  \\

 \huge\tt { \underline \red{solution}} \hookrightarrow

( now we will find the height of the trapezium / parallelogram by applying the 1st formula )

 \\

 \\

  \\ \large \tt \: area \: of \: the \: parallelogram \:  =  \: base \:  \times  \: height \:  \\  \\  \large \tt \: 80cm \:  =  \: 10 \:  \times  \: height \: \\  \\  \large \tt \:   \: 10 \:  \times  \: height \: = 80cm  \\  \\  \large \tt \: height \:  =  \frac{8 \cancel0}{1 \cancel0}  \\  \\  \large \tt \: height \:  =  \: 8cm \\  \\

 \large \tt  \red{\:  \therefore \: the \: height \: of \: the \: trapezium \: is \: 8cm \: } \\

( now we will find the area of the trapezium by applying the 2nd formula .)

 \\

 \large \tt \: let \: \:  \:  \red a \:  = 22 \: and \:  \red b\:  = 10 \\  \\  \large \tt \: area \: of \: the \: trapezium \:  =  \: \frac{1}{2} (a + b) \times h \\  \\  \large \tt \: area \: of \: the \: trapezium \:  =  \:  \frac{1} {\cancel{2}} (22 + 10) \times \cancel 8 {}^{4}  \\  \\  \large \tt \: area \: of \: the \: trapezium \:  =  \:32 \times 4 \\  \\  \large \tt \: area \: of \: the \: trapezium \:  =  128 \: cm {}^{2}  \\  \\  \\

Similar questions