in fig 3.13 lines AB and CD intersect at o. if angle AOC+angleBOC=70 and angle BOD=40find angleBOE and reflex angle COE
Answers
Answer:
aoc + boe = 70 given
bod = 40
aoc = bod =40 (vertically opposite angle)
so
aoc + boe = 70
boe = 70-40=30
aob = 180 ( linear pair)
aoc+ coe+ boe = 180
40 + coe +30 =180
coe=180-70=110
now reflex coe
aoc+ aod+bod+boe=360
aod= coe( vertically opposite angle)
reflex coe= 360
coe= 110
reflex coe = 360-coe
360-110=250 .....!!!!!!
Step-by-step explanation:
∠AOC + ∠BOE = 70°
∠AOC + ∠COE + ∠BOE = 180°
[ linear pair ]
So,
if ∠AOC + ∠BOE = 70°
so,
→ 70° + ∠COE = 180°
→ ∠COE = 180 - 70
→ ∠COE = 110°
.
∠BOD = ∠AOC [ Vertically Opposite Angles ]
.
Now,
→ ∠AOC + ∠COE + ∠BOE = 180°
→ 40° + 110° + ∠BOE = 180°
→ 150° + ∠BOE = 180°
→ ∠BOE = 180° - 150°
→ ∠BOE = 30°
.
∠BOD + ∠DOA = 180° [Liner Pair]
→ 40° + ∠DOA = 180°
→ ∠DOA = 180° - 40°
→ ∠DOA = 140°
Hence,
reflex angle ( ∠COE ) = ∠AOC + ∠DOE + ∠BOD + ∠BOE
reflex angle ( ∠COE ) = 40° + 140° + 40° + 30°
reflex angle ( ∠COE ) = 250°
Hope it helps
Pls mark as brainliest