Math, asked by anis58, 1 year ago

in fig.3.42, if line PQ and RS intersect at point T, such that angle |_PRT=40°,|_ RPT=95° and angle |_TSQ= 75°,find angle|_SQT.

Attachments:

Answers

Answered by Anonymous
2

Hello mate ☺

____________________________

Solution:

In ∆PRT, we have

∠PRT+∠RPT+∠RTP=180°   (Sum of three angles of a triangle =180°)

⇒40°+95°+∠RTP=180°

⇒∠RTP=180°−40°−95°=45°

∠RTP=∠QTS     (Vertically Opposite Angles)

Therefore, ∠QTS is also equal to 45°

In ∆STQ, we have

∠SQT+∠TSQ+∠QTS=180°  (Sum of three angles of a triangle =180°)

⇒∠SQT+75°+45°=180°

⇒∠SQT=180°−75°−45°=60°

I hope, this will help you.☺

Thank you______❤

_____________________________❤

Similar questions