In fig. 3 , prove that∆MNO ≈∆XYZ
Answers
Answer:
In ∆ MNO and ∆ XYZ
MN = XY
Angle MNO = Angle XYZ
MO = XZ
∆ MNO is congruent to ∆ XYZ (by RHS)
hope it helps you
Given : seg PS ≅ seg PT … (1)
seg SQ ≅ seg TR … (2)
In △PST,
seg PS ≅ seg PT
⇒∠S = ∠T … (isosceles triangle theorem)
In △PST, by angle-sum property,
∠P +∠S + ∠T = 180°
⇒ ∠P = 180°- ∠S - ∠T … (3)
Adding (1) and (2), we get:
seg PS +seg SQ ≅seg PT + seg TR
⇒ seg PQ ≅ seg PR
Now, in △PQR,
⇒∠Q = ∠R … (isosceles triangle theorem)
In △PQR, by angle-sum property,
∠P +∠Q + ∠R = 180°
⇒∠P = 180° -∠Q - ∠R … (4)
From (3) and (4),
180° - ∠Q - ∠R = 180° - ∠S -∠T
⇒ ∠Q + ∠R = ∠S + ∠T
But ∠Q = ∠R and ∠S = ∠T
⇒ 2 ∠Q = 2 ∠S
⇒∠Q = ∠S
⇒∠Q = ∠S and ∠T = ∠R
But these angles are corresponding angles formed by transversals PQ and PR, respectively.
So side ST is parallel to side QR.