Math, asked by pratikdole78, 3 months ago

In Fig.44, it is given that LM=MN, QM=MR, ML⊥PQ and MN⊥PR. Prove that PQ=PR.​

Attachments:

Answers

Answered by janhavi210608
6

Answer:

plz mark as brilliant.............

Attachments:
Answered by Anonymous
134

  { \purple \implies} \huge \rm { \red{given \: that}}

 \implies \large \rm{(lm = mn)} \\  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \large \rm  (qm = mr) \\  \:  \:  \:  \: \:  \large \rm{(ml \: is \: perpendicular \: to \: pq)} \\  \:  \:  \:  \large \rm{(mn \: is \: perpendicular \: to \: pr)}

 \purple \implies \huge \rm{ \red{to \: prove}}

 \large \bold{pq = pr}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\red \implies} { \rm {now \: proof}}

 \rm{ \purple{in \: triangle \: qml \: and \: triangle \: rmn}}

 \large \implies{ \huge \rm { \pink{ml = mn}}}

 \large \implies{ \huge \rm { \pink{qm = mr}}}

 \implies{  \rm { \pink{angle \: mlq = angle \: mnr}}}

Hence,

∆QML=~∆RMN

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \large \rm{ \orange{by \: rhs \: criteria}}

Now,

angle Q = angle R

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \large \rm { \purple{by \: cpct}}

similarly, PQ=PR

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \frak { \red{hence \: proved}}

Attachments:
Similar questions