Math, asked by mansikumari, 1 year ago

In Fig.6.10,ray OS stands on a line POQ . RayOR and ray OT are angle bisector of angle POS and angle SOQ, respectively . If angle POS=x, find angle ROT.

Answers

Answered by himanshiguptayoo
29

Answer:

Step-by-step explanation:

Attachments:
Answered by sethrollins13
35

✯✯ QUESTION ✯✯

In Fig.6.10,Ray OS stands on a line POQ . RayOR and ray OT are angle bisector of angle POS and angle SOQ, respectively . If angle POS=x, find angle ROT.

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

Given : -

  • \implies\tt{\angle{POS}=x}

To Find : -

  • \implies\tt{\angle{ROT}=?}

Now ,

  • OR is angle bisector of \angle{POS}

So ,

\implies\tt{\angle{POR}=\dfrac{x}{2}\:and\:\angle{ROS}=\dfrac{x}{2}}

Also ,

\implies\tt{\angle{POS}+\angle{SOQ}=180\degree}

\implies\tt{x+\angle{SOQ}=180\degree}

\implies\tt{\angle{SOQ}=180\degree-x}

  • OT is bisector of \angle{SOQ}

\implies\tt{\angle{SOT}=\dfrac{180-x}{2}\:and\:\angle{TOQ}=\dfrac{180-x}{2}}

Now ,

\implies\tt{\angle{ROT}=\angle{ROS}+\angle{SOT}}

\implies\tt{\angle{ROT}=\dfrac{x}{2}+\dfrac{180-x}{2}}

\implies\tt{\angle{ROT}=\dfrac{x+180-x}{2}}

\implies\tt{\angle{ROT}=\cancel\dfrac{180}{2}}

\implies\tt\bold{\angle{ROT}=90\degree}

Attachments:
Similar questions