Math, asked by itskookiesprincess, 1 month ago

In Fig. 6.11, OP, OQ, OR and OS are four rays. Prove that Z POQ + Z QOR + Z SOR + Z POS = 360° ??

 \\

⭐don't spam ⭐
⭐ don't give copied answer ⭐​

Attachments:

Answers

Answered by itzgeniusgirl
34

Question :-

In Fig. 6.11, OP, OQ, OR and OS are four rays. Prove that Z POQ + Z QOR + Z SOR + Z POS = 360° ?

_____________________________

Given :-

  • op,oq,or,os are four rays

_____________________________

To prove :-

  • Prove that Z POQ + Z QOR + Z SOR + Z POS = 360°

______________________________

explanation :-

in fig 6.11 you need to produce any of the rays op,oq,or,or os backwards to point.

let us produce ray oq backwards to a point t so that toq is a line u can check in figure

______________________________

Solution:-

now Ray op stands on line toq therefore,

\rm :\longmapsto\: \angle \: top +  \angle \: poq = 180 \degree - -  -  - (1) \\

similarly,ray os stands on line toq therefore,

\rm :\longmapsto\: \angle \: tos +  \angle \: soq = 180 \degree -  -  -  - (2) \\

but,

\rm :\longmapsto\: \angle \: soq =  \angle \: sor +  \angle \: qor \\

so (2) becomes,

\rm :\longmapsto\: \angle \: tos +  \angle \: sor      + \angle \: qor = 180 \degree \\

now by adding (1) and (3) we get,

\rm :\longmapsto\: \angle \: tos +  \angle \: poq +  \angle \: tos +  \angle \: sor +  \angle \: qor \:  = 360 \degree \\

but,

\rm :\longmapsto\:  \angle \: top +  \angle \: tos =  \angle \: pos \\

therefore (4) becomes

\rm :\longmapsto\:  \angle \: poq + \angle \: qor +  \angle sor +  \angle \: pos = 360 \degree \\

hence proved

_____________________________

Attachments:
Similar questions