Math, asked by Hickson53, 4 months ago

In Fig. 6.13, lines AB and CD intersect at O. If
∠AOC + ∠BOE = 70° and ∠BOD = 40°, find
∠BOE and reflex ∠COE.

\red{\tt{show\: work!}}

Attachments:

Answers

Answered by BlessOFLove
3

{\tt{Question}}\: \purple☟

In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC +∠BOE = 70° and ∠BOD = 40°, find∠BOE and reflex ∠COE.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\red&#9998{\underbrace{\tt{Answer}}}\: \orange☟

⠀⠀	&#9679\purple{\bf{Including \:work }}\red{⇑}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\red{\bold{Given࿐}}

∠AOC + ∠BOE =70°

\purple{\boxed{\bf{To\:find}}}

∠BOE and reflex ∠COE.

\red{\boxed{\tt{Solution}}}⤵️

Since AB is a straight line,

∴ ∠AOC + ∠COE + ∠EOB = 180°

or (∠AOC + ∠BOE) + ∠COE = 180° or 70° + ∠COE = 180° [ ∵∠AOC + ∠BOE = 70° (Given)]

or ∠COE = 180° – 70° = 110°

∴ Reflex ∠COE = 360° – 110° = 250°

Also, AB and CD intersect at O.

∠COA = ∠BOD [Vertically opposite angles]

But ∠BOD = 40° [Given]

∴ ∠COA = 40°

Also, ∠AOC + ∠BOE = 70°

∴ 40° + ∠BOE = 70° or ∠BOE = 70°-40° = 30°

\blue{\boxed{\tt{Thus, ∠BOE = \:30°}}}

\red{\boxed{\bf{and}}}

\purple{\boxed{\tt{reflex\: ∠COE\: \:=250°}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬⠀

	&#9679\orange{\bf{Question\: solved}}\: \green✔

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

All necessary formulas⤵️

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\red{\underbrace{complementary \:angle}}}}\red\star

The sum of 2 numbers=90°

example  a−b=90°

how to find "a" if a is not mentioned

\red{\underbrace{\bf{\orange{Given࿐}}}}

a= \: ?

b = 40

a+40=\:90°

a=90-40°

a=50°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink\star{\bf{\purple{\underbrace{supplementary\: angle}}}}\red\star

The sum of two numbers= \:180°

example a+b=180°

how to find "a" if a is not mentioned

Given

a= \:?

b =\: 40

a+40=180°

a=180-40°

a=140°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\green{\underbrace{Adjacent \:angle}}}}\red\star

If there is a common ray between {\bf&#x2220}a and {\bf&#x2220}b so it is a adjacent angle.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\blue{\underbrace{Vertical\: opposite\: angle }}}}\red\star

Vertical angles are pair angles formed when two lines intersect. Vertical angles are sometimes referred to as vertically opposite angles because the angles are opposite to each other.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\orange{\underbrace{lenear\: pair \:of\: angles}}}}\red\star

Here {\bf&#x2220}a+{\bf&#x2220}b=180°.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions