In Fig. 6.17, POQ is a line. Ray OR is perpendicular
to line PQ. OS is another ray lying between rays
OP and OR. Prove that
angle ROS= 1/2 (angle QOS- angle POS).
Answers
Answered by
2
Answer:
Your answer
Step-by-step explanation:
Given:
OR perpendicular to PQ.
\implies \angle ROQ = 90\degree⟹∠ROQ=90°
Proof:
/* From the figure ,
\angle ROS = \angle QOS - \angle QOR \:---(1)∠ROS=∠QOS−∠QOR−−−(1)
\angle ROS = \angle ROP - \angle POS \:---(2)∠ROS=∠ROP−∠POS−−−(2)
/* Adding (1) and (2)
\angle ROS + \angle ROS = \angle QOS - \angle QOR + \angle ROP - \angle POS∠ROS+∠ROS=∠QOS−∠QOR+∠ROP−∠POS
Since , \angle QOR = \angle ROP = 90\degree \:(given)Since,∠QOR=∠ROP=90°(given)
\implies 2\angle ROS = \angle QOS - \angle POS⟹2∠ROS=∠QOS−∠POS
\implies \angle ROS = \frac{1}{2} [\angle QOS - \angle POS ]⟹∠ROS=
2
1
[∠QOS−∠POS]
Hence , proved .Hence,proved.
•••♪
Similar questions