Math, asked by 1222004avi, 4 months ago

In fig . 6.20, DE || OQ AND DF || QR.SHOW THAT EF || QR.​

Answers

Answered by Ashishchaturvedi
2

Answer:

Given : DE || OQ and DF || OR.

To prove EF || QR.

Since DE || OQ so we have

Also, DF || OR

From equation 1 and 2, we have

Thus, EF || QR. (converse of basic proportionality theorem)

Hence proved

Answered by rayrafi200022
0

Answer:

HELLO MATE ,

EF//QR [CONVERSE OF BPT]

Step-by-step explanation:

GIVEN;

DE//OQ

DF//OR

PROVE;

EF//QR

SOLUTION;

IN ΔPOQ ,  DE//OQ

       \frac{PE}{EQ} =\frac{PD}{DO} ------[BPT]--1

IN ΔPOR ,  DF//OR

      \frac{PE}{FR} =\frac{PF}{FR} ------[BPT]--2

From equation 1 and 2

      \frac{PE}{EQ} =\frac{PF}{FR}

IN ΔPQR  ,  EF//QR

      \frac{FE}{EQ} =\frac{PF}{FR} ------[proved]

THEREFORE, EF//QR [converse of BPT]

HOPE IT HELPS U PLZ MARK AS BRAINALIEST

Similar questions