in Fig. 6.31. ir PQ 1 ST. POR 110 and
RST= 130 find QRS.
Hint : Draw a line parallel to ST through
point R)
Answers
Step-by-step explanation:
Let us draw a line XY
parallel to ST and passing through point R.
∠PQR + ∠QRX
= 180º (Co-interior angles on the same side of transversal QR)
⇒ 110º +
∠QRX = 180º
⇒ ∠QRX =
70º
Also,
∠RST + ∠SRY
= 180º (Co-interior angles on the same side of transversal SR)
130º + ∠SRY
= 180º
∠SRY = 50º
XY is a straight line.
RQ and RS stand on it.
∴ ∠QRX +
∠QRS + ∠SRY
= 180º
70º + ∠QRS
+ 50º = 180º
∠QRS = 180º
− 120º = 60º
Answer:
Solution: Let us draw a parallel line XY to PQ || ST and passing through point R.
Sum of interior angle on the same side of the transversal is always = 180°
So that
∠ PQR + ∠ QRX = 180°
Given that ∠ PQR= 110°
110° + ∠QRX = 180°
∠QRX = 180° -110°
∠QRX = 70°
Sum of interior angle on the same side of the transversal is always = 180°
∠RST + ∠SRY = 180° (Co-interior angles on the same side of transversal SR)
Also
130° + ∠SRY = 180°
∠SRY = 50°
XY is a straight line. Use property of linear pair we get
∠QRX + ∠QRS + ∠SRY = 180°
70° + ∠QRS + 50° = 180°
∠QRS = 180° − 120°
= 60°
Step-by-step explanation:
MARK IT BRAINLIEST..✔✔