Math, asked by abhishekmavi590, 9 months ago

in fig.6.39, sides QP and RQ of /\ PQR are produced to points S and T respectively. if /_PQT=110°, Find /_PRQ.

Attachments:

Answers

Answered by sethrollins13
26

Given :

  • ∠SPR = 135°
  • ∠PQT = 110°

To Find :

  • ∠PRQ

Solution :

\longmapsto\tt{\angle{PQT}+\angle{PQR}=180\degree}

\longmapsto\tt{110\degree+\angle{PQR}=180\degree}

\longmapsto\tt{\angle{PQR}=180\degree-110\degree}

\longmapsto\tt\bold{\angle{PQR}=70\degree}

Now :

\longmapsto\tt{\angle{SPR}=\angle{PQR}+\angle{PRQ}\:(Exterior\:angle)}

\longmapsto\tt{135\degree=70\degree+\angle{PQR}}

\longmapsto\tt{135\degree-70\degree=\angle{PQR}}

\longmapsto\tt\bold{\angle{PQR}=65\degree}

Therefore :

\longmapsto\tt{\angle{PQR}=70\degree}

\longmapsto\tt{\angle{PQR}=65\degree}

Attachments:
Similar questions