Math, asked by upasanamondal99, 1 month ago

In Fig. 6.40, X = 62°, XYZ = 54°. If YO and ZO are the bisectors of XYZ and
XZY respectively of XYZ, find OZY and YOZ.

Answers

Answered by sethrollins13
158

Given :

  • ∠XYZ = 54°
  • ∠X = 62°

To Find :

  • ∠OZY and ∠YOZ

Solution :

In Δ XYZ :

\longmapsto\tt{\angle{YXZ}+\angle{XYZ}+\angle{XZY}=180^{\circ}\:(A.S.P)}

\longmapsto\tt{62^{\circ}+54^{\circ}+\angle{XZY}=180^{\circ}}

\longmapsto\tt{116+\angle{XZY}=180^{\circ}}

\longmapsto\tt{\angle{XZY}=180^{\circ}-116^{\circ}}

\longmapsto\tt{\angle{XZY}=180^{\circ}-116^{\circ}}

\longmapsto\tt\bf{\angle{XZY}=64^{\circ}}

Also ,

\longmapsto\tt{\angle{OYZ}=\cancel\dfrac{54}{2}=27^{\circ}}

\longmapsto\tt\bf{\angle{OZY}=\cancel\dfrac{64}{2}=32^{\circ}}

Now ,

In Δ YOZ :

\longmapsto\tt{\angle{OYZ}+\angle{OZY}+\angle{YOZ}=180^{\circ}\:(A.S.P)}

\longmapsto\tt{27^{\circ}+32^{\circ}+\angle{YOZ}=180^{\circ}}

\longmapsto\tt{59+\angle{YOZ}=180^{\circ}}

\longmapsto\tt{\angle{YOZ}=180^{\circ}-59^{\circ}}

\longmapsto\tt\bf{\angle{YOZ}=121^{\circ}}

Attachments:

Anonymous: Nice
Answered by BrainlyMilitary
62

Proper Question :

  • In the given figure [ as attachment ] ∠62°, ∠XYZ = 54°.If YO and ZO are the bisectors of XYZ and XZY respectively of \triangle XYZ, Find ∠ OZY and ∠YOZ .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : Angle X = 62⁰ , Angle XYZ = 54⁰ & YO and ZO are the bisectors of XYZ and XZY , respectively .

Exigency To Find : Angle OZY and YOZ .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

  • YO is the angle bisector of XYZ :

\qquad \therefore \sf \angle OYZ = \angle XYO \:=\:\dfrac{1}{2} \:\:of\:\angle XYZ \:\:

\qquad :\implies \sf \angle OYZ = \angle XYO \:=\:\dfrac{1}{2} \:\:of\:\angle XYZ \:\:

⠀⠀⠀⠀⠀Here ,

  • \angle XYZ = 54 .

\qquad :\implies \sf \angle OYZ = \angle XYO \:=\:\dfrac{1}{2} \:\:of\:\angle XYZ \:\:

\qquad :\implies \sf \angle OYZ = \angle XYO \:=\:\dfrac{1}{2} \:\:\times\: 54^\circ \:\:

\qquad :\implies \sf \angle OYZ = \angle XYO \:=\:\dfrac{1}{\cancel {2}} \:\:\times\: \cancel {54^\circ }\:\:

\qquad :\implies \sf \angle OYZ = \angle XYO \:=\: 27^\circ \:\:

\qquad \therefore \pmb{\underline{\purple{\:\angle OYZ = \angle XYO \:=\: 27^\circ \:\:  }} }\bigstar \\

⠀⠀⠀⠀⠀AND ,

  • ZO is the angle bisector of XZY :

\qquad \therefore \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{2} \:\:of\:\angle XZY \:\:

\qquad :\implies \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{2} \:\:of\:\angle XZY\qquad \bigg\lgroup \sf{ \:\:Eq^n \:\:1 \:}\bigg\rgroup \:\:

Now , In \triangle XYZ :

 \qquad \dashrightarrow \sf \angle YXZ \:+ \:\angle XYZ  + \angle XZY =\: 180^0 \:\:

 \qquad \dashrightarrow \sf \angle YXZ \:+ \:\angle XYZ  + \angle XZY =\: 180^0 \:\qquad \bigg\lgroup \sf{ \:\:Angle \:Sum \:Property \:of \:Triangle \:\:\: }\bigg\rgroup\:

 \qquad \dashrightarrow \sf 62^0 \:+ \:54^0  + \angle XZY =\: 180^0 \:\:

 \qquad \dashrightarrow \sf 116^0 + \angle XZY =\: 180^0 \:\:

 \qquad \dashrightarrow \sf \angle XZY =\: 180^0 - 116^0 \:\:

 \qquad \dashrightarrow \sf \angle XZY =\: 64^0 \:\:

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \:  \: Value\:in\:Eq^n\: 1 \::}}\\

\qquad :\implies \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{2} \:\:of\:\angle XZY\qquad \bigg\lgroup \sf{ \:\:Eq^n \:\:1 \:: }\bigg\rgroup \:\:

\qquad :\implies \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{2} \:\:of\:\angle XZY \:\:\\

\qquad :\implies \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{2} \:\:\times\:64^0 \:\:\\

\qquad :\implies \sf \angle XZO = \angle OZY \:=\:\dfrac{1}{\cancel {2}} \:\:\times\:\cancel {64^0} \:\:\\

\qquad :\implies \sf \angle XZO = \angle OZY \:=\: 32^\circ \:\:

\qquad \therefore \pmb{\underline{\purple{\:\angle XZO = \angle OZY \:=\: 32^\circ \:\:  }} }\bigstar \\

Now , In \triangle OYZ :

 \qquad \dashrightarrow \sf \angle OYZ \:+ \:\angle OZY + \angle YOZ =\: 180^0 \:\:

 \qquad \dashrightarrow \sf \angle OYZ \:+ \:\angle OZY + \angle YOZ =\: 180^0 \:\qquad \bigg\lgroup \sf{ \:\:Angle \:Sum \:Property \:of \:Triangle \:\:\: }\bigg\rgroup\:

 \qquad \dashrightarrow \sf 27^0 \:+ \:32^0  + \angle YOZ =\: 180^0 \:\:

 \qquad \dashrightarrow \sf 59^0  + \angle YOZ =\: 180^0 \:\:

 \qquad \dashrightarrow \sf  \angle YOZ =\: 180^0 - 59 ^0\:\:

 \qquad \dashrightarrow \sf  \angle YOZ =\: 121 ^0\:\:

\qquad \therefore \pmb{\underline{\purple{\:  \angle YOZ \:=\: 121^\circ \:\:  }} }\bigstar \\\\

\qquad \therefore \underline {\sf Hence, \:\: \angle  YOZ \:\:and \:\angle OZY \:\:is \:equal \:to \:the \bf \: 32^\circ \:\:\& \:\: 121 ^\circ \: \sf ,respectively. }\:\\\\

Attachments:
Similar questions