Math, asked by np2765293, 1 month ago

In Fig. 6.42, if lines PQ and RS intersect at point T, such that PRT = 40°, RPT = 95° and TSQ = 75°, find SQT.​

Attachments:

Answers

Answered by ItzBrainlyLords
5

 \large \star  \underline{ \underline{ \sf \: given : }} \\

  • PRT = 40°

  • RPT = 95°

  • TSQ = 75°

  \\ \large \star  \underline{ \underline{ \sf \: to \:  \: find: }} \\

  • SQT

  \\ \large \star  \underline{ { \sf \: solving: }} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \star   \underline{\tt \: angle \:  \: sum \:  \: property \:}  \star \\  \\

 \large \sf \: sum \:  \: of \:  \: 3 \: angles = 180 \degree \\  \\

 \large \sf:  \implies \:  \angle PRT  +  \angle RPT  +  \angle PTR = 180 \degree \\  \\  \large \sf:  \implies \:  40  \degree+ 95 \degree +  \angle PTR = 180 \degree \\  \\ \large \sf:  \implies \:  135 \degree +  \angle PTR = 180 \degree \\  \\  \large \rm \mapsto \:  \: transposing \:  \: terms :  \\  \\ \large \sf:  \implies \:    \angle PTR = 180 \degree  - 135 \degree \\  \\ \large \sf  \therefore \:  \:    \underline{ \angle PTR = 45\degree }\\

 \:

\large \rightarrow \:  \sf  \angle PTR =  \angle STQ \\  \large \sf \:  \: (vertically \:  \: opposite \:  \: angle) \\  \\  \large :  \implies \:  \sf \: 45 \degree = 45 \degree \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \star   \underline{\tt \: angle \:  \: sum \:  \: property \:}  \star \\  \\

 \large \sf  : \implies \:  \angle SQT +  \angle STQ +  \angle TSQ  = 180 \degree \\  \\ \large \sf  : \implies \: \angle SQT +45 \degree + 75 \degree = 180 \degree \\  \\ \large \sf  : \implies \: \angle SQT +120 \degree= 180 \degree \\  \\ \large \sf  : \implies \: \angle SQT  = 180 \degree - 120 \degree \\  \\

 \:  \:  \large  \boxed{ \underline{ \sf \therefore \:  \:  \angle SQT  = 60 \degree}} \\

Similar questions